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Fig. 1. Surface geological map of the tailings dam watershed of Dar-e-Allo copper mine (Bavi & Zand-Moghadam, 2025). 
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Table 1. Geochemical analysis results of major element oxides in the sediments (green highlight: lowest concentration; 
red highlight: highest concentration) 
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Table 1. Geochemical analysis results of minor element in the sediments (green highlight: lowest concentration; red 
highlight: highest concentration) 

  

                                                
1 Chemical Index of Alteration 2 Index of Compositional Variability 

215  

  



���������  
��
���� ����13 ����� 
26 ������ � ����� 
1404    

 

 

 8�/K3.  ���. ���7 
W��X ��������'( ��*�7% S���7(REEs) (0TFU H�
�1�� :��
I 0��F��# � 0TFU H�
��� :�V� 0��F��#) &����� 

Table 1. Geochemical analysis results of REEs in the sediments (green highlight: lowest concentration; red highlight: 
highest concentration) 
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Fig. 2. Geochemical classification of clastic sediments according to Pettijohn et al. (1987). All sediment samples fall 
within the greywacke field, which reflects the high content of clay minerals in the samples. 
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Fig. 3. Normalized enrichment patterns of major, minor and REEs in the sediments relative to the average upper 
continental crust (UCC) 
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Fig. 4. Ternary A–CN–K diagram showing the position of the studied clastic sediments (Nesbitt & Young, 1984). The 
samples exhibit a clear linear trend toward the direction of increasing chemical weathering, which is associated with a 
higher proportion of illite minerals. 
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Fig. 5. Binary diagram illustrating the paleoclimatic conditions of the source area for the studied clastic sediments (after 
Suttner & Dutta, 1986). The position of the samples suggests that the sediments were deposited under predominantly 
arid to semi-arid climate conditions. 
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Fig. 6. Th/U versus U diagram showing the position of the studied sandstones (McLennan et al., 1993). The plot indicates 
that the source rocks in the study area experienced a low degree of chemical weathering. 
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Fig. 7. Binary diagram of ICV versus CIV showing the position of the studied sediment samples (after Páter et al., 2005). The 
results indicate that the sediments were primarily derived from andesitic and basaltic source rocks. 

  

 LD�8. "7��7 ��-��K ���Z�� �$���7 �� �Z�)*�+� ���/N� ���� ��#La/Sc  L��B� ��Co/Th ) 
�$��D�# � �52002"7��7 ���� _�� d( �� ���� ��#

.��$� �$
I 0*$��� �Z 0��/7% ���/N� 

Fig. 8. La/Sc versus Co/Th binary diagram showing the position of the studied sediment samples (Gu et al., 2002). The diagram 

indicates that the sediments were derived from source rocks ranging from andesite to basalt. 
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Fig. 9. Binary diagram of Cr/Th versus Th/Sc (Verma & Condie, 1987) showing the position of the studied sediment samples. 

The plot suggests that the sediments were derived from source rocks ranging from andesite to basalt. 

223  

  



���������  
��
���� ����13 ����� 
26 ������ � ����� 
1404    

 

 

$1>� *��% 5�� 5�s��Zr/Sc  S��T� #
Th/Sc ! �  ���


$1>� ��3�� K� @= &� $�� !���l��]� #
�� 5�� � 

��h�= &7�' "
�# 
�E�5#�Z	1 �� 5�# *��
�# 5#��.  �#

�� �� �� !�
�# 5�����.�) _
2 #
 c$�� �
�� ��Z%

 $1>� ST� � S;L (��+)�Zr/Sc !� (��+)���� �� .���� �#

$1>� ��� ��
�T� �
�
 #��B ��!� ���� � S��T� #
 �� ��
=

&7�' � #
�� 3�� $���� &� A�# .
�� !% !�
�# 5��

A�>�� 5��	#��B !��=�
 ��� �
 $1>� #
 #���  ���� �

K�) ���#� ;� � ���-1993 �2003&�
;� 5�����, � ( -

 ���� ���	��
 ��� 5�# �� &0-�t� 
#
� 5#��. "
�# 5��

!�3�� �� *��
�# ��� &� ��
  M���= �� 5��#
��

-���� � !�����.��� R��� !� S �) ���10.(  S��T�� #��)#

La/Sc  ����� #
Th/Co  ���-
�) !��=�
 A�>�� #
2002 (

 S �)11�
�
 *��% � ( �<��� 5��V, Ni  �Th*10  #


&� A�>�� ���#� ;� � !-������) !��=2007�= +�� (� 5��

 *��
�# 5��� J����L �= K�>�) M���= �� #
�� 3�� ��

 S �) $�� !=�0-�t� �
��H�11.(  
  

 LD�10. "7��7 ��-��K�7 ���Z�� �$���7 �� �Z�)*�+� ���/N� ���� ��#V 0Zr/Sc  
�$
� ��Th/Sc c�) 
�$��D�# � ���*2003 �/�#� ��17 �$���7 H�$ .(

"7��7 �$
� ��*$��� �Z ����/7% g��
Z �� ���� _��.0�$ ")*�+� ���� ��# 

Fig. 10. Zr/Sc versus Th/Sc binary diagram showing the position of the studied sediment samples (McLennan et al., 2003). The 

plot indicates that the sediments were derived from source rocks with compositions ranging from andesite to basalt. 
  

  
 LD�11. "7��7 ��-��K0V�7 ���Z�� �$���7 �� �Z�)*�+� ���/N� ���� ��#La/Sc   
�$
� ��Th/Co  
�
*��)2002"� �$���7 � ( ���ZV-Ni-Th*10 

 
�$��D�# � �*���$
�)2007��17 ���Z�� �$���7 .d("� �$���7 � c��F: g*�U g��
Z �� ���� _�� �/�#���17 ���Z b�$�/3 g��
Z �� ���� _�� �/�#�

"7��7 �$
� c���� �Z.0�$ ")*�+� ���� ��# 

Fig. 11. Binary diagram of La/Sc versus Th/Co (Cullers, 2002) and ternary diagram of V–Ni–Th×10 (Brasher et al., 2007) 

showing the studied sediment samples. The binary diagram indicates that the sediments were mainly derived from felsic source 
rocks, whereas the ternary diagram suggests that some source rocks had intermediate to mafic compositions. 
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Table 4. Minor element ratios for identifying source rock types. The ratios measured in the studied sediments are compared 

with the typical ranges for the upper continental crust, felsic (acidic), and mafic (basic) rocks (Zand-Moghadam et al., 2013). 
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Fig. 12. Binary diagram of SiO₂ versus K₂O + Na₂O showing the tectonic setting of the studied sandstones (Roser & Korsch, 

1986). The plot indicates that the sandstones were deposited in settings corresponding to continental active margins and oceanic 

arcs. 
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Fig. 13. Binary diagram of SiO₂ versus Log (K₂O/Na₂O) showing the tectonic setting of the studied sandstones (Roser & 
Korsch, 1986). The diagram indicates that the samples were deposited in an oceanic island arc setting. 
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Fig. 14. Ternary diagrams illustrating the tectonic setting of the studied sandstones. (A) Major element ternary diagram (Cox 

et al., 1994), showing that most samples plot in field A. (B), (C), and (D) Trace element ternary diagrams (Bhatia & Crook, 

1986), also indicating that the sediments predominantly fall within field A. The definitions of each field are as follows: A: 

Oceanic Island arc; B: Continental Island arc; C: Active continental margin; D: Passive continental margin. 
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Tables 5. Tectonic setting of the clastic sediments from the Dar-e-Allo copper mine inferred from trace and rare earth 
element ratios, compared across different tectonic environments (Yan et al., 2012; Bhatia & Crook, 1986). 
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Abstract 
The sedimentation lake formed behind the waste dam of the Dar-e-Allo copper mine in south of Kerman, 

annually is the host of detrital material derived from the natural weathering and erosion of various 

upstream lithologies. To determine the provenance of these sediments, 18 samples were collected from 

clastic deposits along the main drainage channels as well as from sediments accumulated behind the 

dam. These samples were analyzed geochemically using XRF and XRD techniques to quantify the 

concentrations of major, minor, and rare earth elements. The calculated Chemical Index of Alteration 

(CIA) values, together with the A–CN–K ternary diagram, indicate a low to moderate degree of chemical 

weathering under arid to semi-arid climatic conditions in the provenance. The distribution patterns in 

binary and ternary geochemical diagrams reveal that the sediments are primarily derived from 

intermediate to mafic volcanic rocks (andesite and andesite–basalt), with minor contributions from felsic 

lithologies (dacite and rhyodacite). Low concentrations of chromium and nickel exclude any significant 

contribution from ultramafic sources. The position of the samples in binary and ternary discrimination 

diagrams, along with key geochemical ratios such as Th/U and La/Th, suggests a magmatic provenance 

associated with a tectonic setting typical of an Oceanic Island Arc. These findings provide valuable 

baseline data for sediment resource management in mining areas and contribute to the development of 

sustainable resource management strategies. 
 

Keywords: Dar-e-Allo copper mine, Waste dam, Provenance, Sediment Geochemistry, Weathering 

Indices  
 
Introduction 
Sediments possess a remarkable ability to 

record and reflect key information related to 

their provenance, weathering, and erosion 
history from source to sink site. Geochemical 

characterization of sediments—including 

analyses of major, minor, and trace elements—

serves as a powerful tool for interpreting 

geological processes and identifying sediment 

sources. The chemical mobility of elements 

largely depends on the composition of the 

parent rock, prevailing climatic conditions, and 

physicochemical alterations during 

weathering. Moreover, sediments act as major 

reservoirs for heavy metals and potentially 

contaminating elements (PCEs), playing a 

significant role in geochemical cycles and in 

assessing both natural and anthropogenic 

influences. The Dar-e-Allo copper mine 

sedimentation dam, located in southern 

Kerman Province, represents a key 

hydrological infrastructure designed to control 

runoff and sediment accumulation. It also 

serves to mitigate flood risks and protect 

downstream settlements. Previous studies have 

indicated that natural erosion, driven by active 
tectonic settings and intense weathering 

processes, is the primary source of sediments 

entering the dam reservoir. The upstream 

parent rocks mainly consist of tuff, andesite, 

basalt, dacite, and rhyodacite, characterized by 

phyllic, argillic, and propylitic alterations, 

which make them highly susceptible to 

erosion. The main objective of this study is to 

identify the primary sources of sediments and 

determine the parent rocks with the highest 

natural erosion potential. To achieve this, a 

comprehensive geochemical investigation of 

major oxides and trace elements in the 

sediments is essential. Such analyses enable 

the reconstruction of weathering, erosion, and 

transport processes, ultimately contributing to 

the sustainable management of the region’s 

water and soil resources. 
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Materials & Methods 
Eighteen sediment samples were collected 

from first-order upstream channels and the 

waste dam to investigate their geochemical 

characteristics. After natural drying, removal 

of impurities, grinding, and sieving, about 50 

mg of each sample was analyzed by XRF and 

XRD at Zar-Azma Laboratory. The detrital 

sediments, influenced by weathering, erosion, 

and fluvial transport, were analyzed for nine 

major oxides (wt%), fifteen minor elements, 

and thirteen REEs (ppm). Element 

concentrations were normalized to the Upper 

Continental Crust (UCC), providing key 

insights into sediment composition and 

provenance. 
 

Results and Discussion 
The SiO₂ content ranges from 38.55% to 

65.68%, with an average Al₂O₃ of ~27.6%, and 

a low SiO₂/Al₂O₃ ratio indicating a greywacke 

composition rich in clay minerals. Fe₂O₃ is 

significantly enriched, while MgO and Na₂O 

are depleted, suggesting a volcanic source with 

low Mg and Na content. Trace elements like 

Ba, Sr, and V are abundant, though most show 

depletion relative to UCC. REE patterns reveal 

LREE enrichment, reflecting derivation from 

intermediate to mafic igneous rocks. Overall, 

the geochemical data indicate a volcanic 

provenance modified by weathering and 

sedimentary processes. 
To assess the degree of weathering in the 

source area, various indices based on the ratio 

of mobile (Na₂O, K₂O, CaO, MgO) to 

immobile (Al₂O₃, TiO₂, ZrO₂) oxides were 

used. The Chemical Index of Alteration (mean 

CIA=69.6) suggests moderate chemical 

weathering and a semi-arid to arid 
paleoclimate. A-CN-K ternary plots show 

samples trending toward the illite field due to 

depletion of Na and Ca, confirming 

progressive weathering. XRD analyses support 

the presence of illite as a dominant alteration 

product. The Th/U ratios (<3.8) indicate 

limited weathering and minimal sediment 

recycling. Overall, geochemical proxies 

consistently point to low-to-moderate 

weathering intensity under dry to semi-arid 

climatic conditions in the provenance. 

The provenance of the studied sediments was 

investigated using major, trace, and rare earth 

element geochemistry, as well as weathering 

and compositional indices. The A-CN-K 

ternary diagram indicates a weathering trend 

from felsic parent rocks toward the Al, while 

CIA–ICV relationships suggest derivation 

from intermediate volcanic sources. 

Al₂O₃/TiO₂ ratios (18–79) point to intermediate 

to felsic parent lithologies, mainly andesite and 

rhyodacite. Trace-element ratios (e.g., La/Sc, 

Th/Sc, Co/Th) and binary plots (e.g., Cr/Th vs. 

Th/Sc, Zr/Sc vs. Th/Sc) consistently indicate 

an andesitic to basaltic provenance with 

minimal sediment recycling. Low Cr and Ni 

concentrations exclude ultramafic sources, and 

Rb contents suggest most samples were 

derived from intermediate to felsic rocks. REE 

patterns, with enriched LREEs relative to 

HREEs, further support a felsic signature. 

Combined geochemical data and petrographic 

observations confirm a dominant 

intermediate–mafic source (andesite to basaltic 

andesite), with minor contributions from felsic 

(dacite, rhyodacite) and subordinate carbonate 

sources. Overall, the sediments reflect a mixed 

provenance dominated by intermediate 

igneous lithologies. Geochemical 

discrimination diagrams using major, trace, 

and REE data consistently place the studied 

sediments within an oceanic island arc (OIA) 

tectonic setting. Binary and ternary plots (SiO₂ 

vs. K₂O+Na₂O, La–Th–Sc, Th–Sc–Zr/10) 

confirm deposition related to active continental 

margins and magmatic arc environments. 

Elemental ratios such as Th/U, Th/Sc, La/Th, 

and Rb/Sr further support this tectonic 

interpretation. These findings, combined with 

field observations, suggest sediment derivation 

from weathering and erosion of andesite-

basaltic to rhyodacite lithologies under arid to 

semi-arid conditions within an active oceanic–

continental margin setting. 
 

Conclusions 
This study aimed to identify the primary source 

rocks contributing to sediment erosion and 

transport into the Dar-e-Allo waste dam and to 

assess the enrichment of major oxides, minor 

elements, and REEs relative to the upper 

continental crust (UCC). Geochemical analyses 

reveal enrichment in Al, Fe, Ca, K, Ti, Mn, Pb, 

and Zn and depletion in Si, Mg, Na, Sr, Ba, Th, 

U, Zr, Nb, Y, Sc, Cr, Co, Ni, and REEs. Binary 

and ternary plots support derivation under natural 

weathering and erosion in arid to semi-arid 

climates. CIA values indicate low to moderate 

weathering intensity consistent with regional 

conditions. Tectonic discrimination diagrams 

further place the sediments within an oceanic 

island arc (OIA) setting. 
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