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Fig. 1. The geological map of the Binaloud mountain range in the south of Mashhad, redrawn from the 1:100,000
geological maps of Mashhad (Taheri & Ghaemi, 1994) and Torgabeh (Pourlatifi, 2001). The location of the studied area
is marked with a rectangle on it.
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Fig. 3. The conglomerate discontinuity at the base of the Shemshak formation, which is located on the Mashhad
metamorphic complex, east of the city of Torqabeh, looked westward.
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Fig. 4. Stress tensors in three-dimensional space and the relation of R field shape (Angelier, 1994)
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Fig. 6. a) A view of fault surfaces with NW-SE strike at M1 station, b) A view of fault surfaces with NW-SE strike at
M1 station, c¢) Displacement of quartz vein and S-C fabric that shows the NW-SW movement of faults to the right.
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Fig. 7. a) A view of the faults along NW-SE and NNW-SSE at station M3, which cut the NNW-SSE faults (new) and the NW-
SE faults (older), b) Slip lines on the faults with NNW-SSE strike with an angle of 40° to the northwest, c)Based on accretion

steps (TJIA, 2014), the fault has dextral movement.The arrow of the color planet will push the block in the direction of
movement in front of this fault plane.
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Fig. 8. Two generations of slip lines with an angle of 30° and 0° on a fault plane at station M3
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Fig. 9. Numerous veins filled with Quartz along NNE-SSW




YfO \f.¥ uL’La.».n} 9 ....‘b.‘ At G)Ln.n:: AY 099 “séﬁ)ls Gwl.’..wg,.w)
Stereonet of 15 Planes Strike direction of 15 planes
Weighting (2) 0
270 i S0
180 MaxFreq:13.3
Dip direction of 15 planes Dip angle of 15 planes
Weighting (2) 0 weighting (2) g
270 90
80 cmv
180 MaxFreq:26.6 S0 MaxFreq:86.6
Stereonet of 15 lines Aziinuth of 13 line<
Schmidt Weighting (2) 0
Lower
270 90
180 180 MaxFreq:33.3
Rake angle of 15 lines Pitch angle of 15 lines
Weighting (2) +90 IX Weighting (2)
0
90 MaxFreq:26.6
PBT axes N Schmidt Lower
Weight Mode 2
n/nt: 15/15
@ ol: 23/025
B\ 02: 53/149
[0l o3: 27/282
R: 0.5 AD: 15
QRw: C QRt: D
PET deviation
60
30 L
—
o :r
0 sum of Weights 20
\ % HE
B ¥ . §
Yo UYe Joyd bohas as NNW-SSE slociel L 5 il ol (b (G2 oKiws) ;o NNW-SSE 5 olasel 31 ol (@) JSS
o d Je AP St

3 S Cuwly o8 3> L(R) adgl slo Sowsis a5 b )0 NNW-SSE slaciol b Joud (35035 5 51 (o9 lod (€ ¢ Jlouid o 4 Jono b a2 30
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Fig. 11. a) view of the NNE-SSW fault strike, b) A view of the fault surface with a NN'W-SSE strike with slip lines towards the
northeast where R fractures can be seen on that surface and shows the sinstral movement (Ridel, 1929; Petit, 1987), ¢) Outcrop
of the same strike on the surface where the R fractures show sinstral movement.
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Fig. 12. a) view of the ENE-WSW fault strike, b) The fault surface at station G3, which shows a rake of 30° to the west.
and rosediagrams, streunets related to all the stations with the same strike of slip lines with a tendency to both east and

west, ¢) S-C Structure
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Table 1. Geometric characteristics of faults in the metamorphic units of the study area of Permian age

- - Planes in Strike-Dip-Rake/Pitch format Kinematic axes
E E E Plane . Slip Line Slip P . B . T R é} E
7 < = & A 12 -t < = < = <
1 55 55 8 230 9 9 IS 18 12 | 54 | 129 | 30 | 272 | 0.52 TS
2 40 85 25 | 218 25 25 | IS 14 | 171 | 64 | 51 | 21 | 267 | 0.52 SS
3 E M1 60 78 24 | 235 24 24 | IS 8 191 | 63 | 85 | 26 | 285 | 0.52 SS
4 L:TZJ 52 60 25 | 216 29 29 | IS 3 | 360 | 49 | 94 | 41 | 267 | 0.52 TS
5 65 50 23 | 225 30 30 | IS 10 14 | 42 | 113 | 47 | 273 | 0.52 TS
6 40 55 17 | 208 21 21 IS 11 | 353 | 50 | 97 | 38 | 254 | 0.52 TS
7 120 78 39| 290 | -140 | 40 | ND | 36 | 348 | 48 | 134 | 17 | 245 | 0.5 NS
8 130 73 42| 294 | -136 | 44 | ND | 43 | 356 | 43 | 147 | 15 | 252 | 05 NS
9 115 70 32| 282 | -146 | 34 | ND | 38 | 337 | 51 | 142 | 8 | 241 | 0S5 NS
10 125 80 49 | 293 | -130 | 50 | ND | 41 | 358 | 39 | 133 | 24 | 245 | 05 NS
11 130 80 34| 303 | -145 | 35 | ND | 31 | 357 | 54 | 144 | 16 | 257 | 0.5 NS
12 120 80 34| 293 | -145 | 35 | ND | 31 | 347 | 54 | 134 | 16 | 247 | 05 NS
13 105 70 23 | 276 | <155 | 25 | ND | 31 (326 | 59 | 142 | 2 | 235]| 0S5 SS
14 | m M 125 87 44| 302 | -136 | 44 | ND | 32 | 358 | 46 | 128 | 27 | 250 | 0.5 NS
15 ; 120 70 34 | 286 | -144 | 36 | ND | 40 | 343 | 49 | 145 | 9 | 245 ]| 0S5 NS
16 | Z 120 80 34| 293 | -145 | 35 | ND | 31 | 347 | 54 | 134 | 16 | 247 | 05 NS
17 135 75 47 | 298 | -131 | 49 | ND | 44 5 39 | 148 | 19 | 254 | 0.5 NS
18 120 85 29 | 297 | <151 | 29 | ND | 24 | 347 | 60 | 129 | 16 | 250 | 0.5 SS
19 110 80 39 | 282 | -140 | 40 | ND | 35 [ 339 | 49 | 122 | 19 | 235 | 05 NS
20 100 67 25| 269 | -153 | 27 | ND | 35 | 320 | 55 | 137 | 1 229 | 0.5 SS
21 135 70 23 | 306 | -155 | 25 | ND | 31 [ 356 | 59 | 172 | 2 | 265 | 0.52 SS
22 M2 135 70 23 | 306 | -155 | 25 | ND | 31 [ 356 | 59 | 172 | 2 | 265 | 0.52 SS
23 135 85 9 314 | -171 9 | ND| 10 | 360 | 80 | 164 | 3 | 269 | 0.52 SS
24 160 85 52| 332 | <128 | 52 | ND | 38 | 36 | 37 | 164 | 29 | 279 | 0.5 NS
25 M1 160 85 50 | 334 | -130 | 50 | ND | 37 | 36 | 39 | 164 | 29 | 281 | 0.5 NS
26 158 85 52| 330 | -128 | 52 | ND | 38 | 32 | 38 | 159 | 30 | 275 | 0.5 X
27 160 85 51| 334 | -129 | 51 | ND | 38 | 36 | 38 | 164 | 29 | 280 | 0.5 NS
25 145 75 21 | 319 | -158 | 22 | ND | 26 8 64 | 178 | 4 | 276 | 0.5 SS
26 145 75 14 | 321 | -165 | 15 | ND | 21 8 69 | 190 | 1 98 0.5 SS
27 | m 140 72 14| 315 | -165 | 15 | ND | 23 2 67 | 189 | 3 93 0.5 SS
28 % M2 145 65 31| 309 | -145 | 35 | ND | 42 4 48 | 177 | 4 | 271 | 05 NS
29 E 150 78 19 | 326 | -161 | 19 | ND | 22 14 | 67 | 181 | 5 | 282 | 05 SS
30 | & 145 78 29 | 318 | -150 | 30 | ND | 29 10 | 58 | 165 | 11 | 274 | 0.5 SS
31 160 80 24 | 335 | -156 | 24 | ND | 24 | 25 | 64 | 181 | 9 | 291 | 0S5 SS
32 155 80 34 | 328 | -145 | 35 | ND | 31 22 | 54 | 169 | 16 | 282 | 0.5 NS
33 150 90 30 | 330 180 0 | ND | 21 19 | 60 | 150 | 21 | 281 | 0.51 SS
34 M3 155 90 15 | 335 180 0 | ND | I1 21 75 | 155 | 11 | 289 | 0.51 SS
35 143 70 9 320 | -171 9 | ND | 21 5 68 | 207 | 8 98 | 0.51 SS
36 145 80 0 325 | -180 | O | ND | 7 10 | 80 | 235 | 7 100 | 0.51 SS
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Fig. 13. A view of the ENE-WSW faults that have displaced the NNE-SSW faults in a sinstral manner.
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Table 2. Geometric characteristics of veins in the Methamorphic Unit

Data Input row data Kinematic axes .

set Regime
Joint Vein B T

Id Dip dir. | Dip | Dip dir. Dip Incl. | Azim. Incl. | Azim. Incl. | Azim. Index

1 220 80 270 55 13 190 52 297 35 90 TS

2 220 80 265 70 6 177 69 282 20 85 SS

3 220 80 270 65 8 184 64 289 25 90 SS

4 220 80 280 55 8 195 54 296 35 100 TS
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Table 3. Geometric characteristics of faults in the Granitoid units of the study area of Upper Triassic age
Planes in Strike-Dip-Rake/Pitch format Kinematic axes
E 2| s Plane Slip Line Slip P B T gz
~—- = Bt
s B3 2 e 2] B2 2|2 |z 2 =|2|=]2|" &2
zZ | = = a 5l 5 < £ 5 g 5l g 5l E ]
& < | £ E|E|la|"| < | = | <] ~=|=
1 345 80 44 354 135 45 1D 22 42 44 1 155 | 38 | 294 | 0.5 TS
2 345 80 39 353 140 40 ID 19 40 49 | 153 | 35 | 296 0.5 TS
3 350 80 44 359 135 45 1D 22 47 44 1 160 | 38 | 299 0.5 TS
4 = 350 80 39 358 140 40 1D 19 45 49 | 158 | 35 | 301 0.5 TS
5 G Gl 0 65 17 9 161 19 ID 5 228 | 59 | 129 | 31 | 321 0.5 SS
6 E 345 80 34 352 145 35 ID 16 38 54 | 151 | 31 | 298 0.5 TS
7 Z 330 80 58 346 121 59 1D 28 36 30 | 144 | 46 | 271 0.5 TS
8 330 80 29 335 151 29 1D 13 21 59 | 133 | 28 | 284 | 0.5 SS
9 330 83 34 335 146 34 1D 18 22 55 140 | 29 | 282 0.5 SS
10 135 80 29 309 -150 | 30 | ND | 28 1 59 | 152 | 13 | 264 | 0.5 SS
11 m 140 80 34 313 -145 35 | ND | 31 7 54 | 154 | 16 | 267 0.5 NS
12 A 335 80 36 342 143 37 1D 17 28 52 | 142 | 32 | 287 0.5 TS
13 g' G2 140 75 28 311 -151 29 | ND | 31 3 57 | 165 9 268 0.5 SS
14 % 130 80 24 305 -156 | 24 | ND | 24 | 355 | 64 | 151 9 261 0.5 SS
15 120 80 29 295 -151 29 | ND | 28 | 346 | 59 | 137 | 13 | 249 0.5 SS
16 Gl 10 65 18 18 -20 20 | NS | 31 | 331 | 59 | 140 5 238 | 0.47 SS
17 = 10 44 0 10 0 0 NS | 31 | 335 | 44 | 100 | 31 | 225 | 0.47 XF
18 % G2 30 60 9 35 -10 10 | NS | 28 | 352 | 58 | 140 | 14 | 254 | 0.48 SS
19 L:‘ZJ 20 70 37 35 -40 40 | NS | 42 | 336 | 46 | 177 | 11 76 0.48 NS
20 Z G3 20 75 48 37 -50 50 | NS | 45 | 330 | 38 | 188 | 20 81 0.3 NS
21 10 60 13 182 15 15 1S 11 | 324 | 57 71 31 | 227 0.3 SS
22 75 65 11 80 -12 12 | NS | 26 35 62 | 192 9 300 | 0.43 SS
23 = @ 70 55 8 76 -10 10 | NS | 30 34 54 | 177 | 18 | 293 | 0.43 NS
24 Z 60 40 10 229 15 15 1S 25 19 38 | 131 | 41 | 265 | 0.43 TS
25 E 60 50 7 234 9 9 1S 22 19 49 | 136 | 33 | 274 | 0.43 TS
26 Z 70 90 15 70 0 0 NS 11 24 75 | 250 | 11 116 | 0.47 SS
27 = G3 85 85 29 262 29 29 1S 16 | 215 | 60 94 24 | 312 | 047 SS
28 80 90 15 261 0 0 1S 11 | 214 | 75 80 10 | 306 | 0.47 SS
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Table 4. Geometric characteristics of faults in the conglomerate units of the study area of Jurassic age
- Planes in Strike-Dip-Rake/Pitch format Kinematic axes
E E g Plane Slip Line Slip P B T g %
= - = R ‘E‘b =1
s|E|3 2| 2|2 8|2 |5|2|<|5 3 |£|3]|¢% % =
|8 |3 Z |2 |E|&|&E|5|E|35|E&|Z
1 C1 60 75 29 232 30 30 1S 9 189 | 57 84 32 | 284 | 0.5 SS
2 © 95 15 10 236 40 40 1S 34 46 11 144 | 53 | 250 | 0.5 UF
3 Z C3 140 70 69 213 96 84 1D 25 | 225 6 318 | 65 60 0.5 TF
4 190 40 9 359 -166 14 | ND | 41 35 39 | 262 | 26 149 0.5 NS
5 170 25 24 255 95 85 ID 21 77 2 346 | 69 | 251 | 0.45 TF
6 C1 176 30 29 261 94 86 ID 16 83 2 352 | 74 | 254 | 0.45 TF
7 170 25 20 223 124 56 1D 24 54 14 | 318 | 62 | 200 | 0.45 TF
8 15 82 12 16 168 12 1D 3 61 76 | 162 | 14 | 330 | 0.45 SS
9 m C2 40 88 8 220 -172 8 ND 7 265 | 82 54 4 175 | 0.45 SS
10 © 10 88 20 190 -160 | 20 | ND | 15 | 237 | 70 15 13 143 | 0.45 SS
11 E 35 45 24 189 -145 35 | ND | 52 | 235 | 35 80 12 | 342 | 0.45 NS
12 ca 35 30 28 148 -110 | 70 | ND | 71 173 10 53 16 | 320 | 0.45 NF
13 25 35 17 180 -150 | 30 | ND | 52 | 216 | 30 80 22 | 337 | 045 NS
14 240 20 0 240 0 0 NS | 42 | 221 | 20 | 330 | 42 79 0.45 UF
15 cs 40 35 21 188 -142 | 38 | ND | 56 | 226 | 27 87 19 | 347 | 0.45 NF
16 120 40 32 251 56 56 1S 10 53 21 147 | 67 | 300 | 0.45 TF
17 215 20 17 277 -63 63 NS | 61 | 263 9 10 27 104 | 0.52 NF
18 = ca 125 35 22 271 40 40 1S 18 70 26 | 170 | 57 | 309 | 0.52 TF
19 E 30 35 26 166 -130 | 50 | ND | 63 | 205 | 22 65 16 | 328 | 0.52 NF
20 Z 140 25 25 241 80 80 1S 20 58 4 149 | 69 | 250 | 0.52 TF
21 C5 190 25 23 258 110 70 ID 19 37 9 304 | 69 191 | 0.52 TF
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Table 5. Geometric characteristics of fold and slipline in Conglomerate Unit

- Planes in Strike-Dip-Rake/Pitch format Kinematic axes

E § § Plane Slip Line Slip P B T ® % é
| = . [ . .

s| 2|3 £ | 2 |E| 2| &£ |8|E|z| & |E|z3|¢E Z =

z |8 |5| 2| 2|8 3|8|5 B|5|E|3

1 m 300 65 63 52 80 80 | IS 18 | 192 | 15 | 287 | 67 | 54 | 05 TF

2 4] 260 30 26 24 60 60 | IS 2 27 | 31 | 295 | 58 | 120 | 05 TF

3 g’ C6 | 270 55 39 55 50 50 | IS 2 | 217 29 | 308 | 61 | 123 ] 0.5 TF

4 § 280 50 36 62 50 50 | IS | 39 | 39 10 | 301 | 49 | 199 | 0.5 TF

5 300 85 79 93 80 80 | IS 19 | 37 9 | 304 ] 69 | 191 ] 05 UF
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Fig. 14. a) North-south strike-slip faults with dextral motion at station C3, b) Northwest-southeast faults with a 40° slope to
the southwest at station C4, which has strike-slip motion with a reverse component, ¢) Northeast-Southwest faults with a 35°
slope to the southwest at station C4, which has a sinsstral movement with a normal component.
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Fig. 15. The striation of the layer strike in a offset at station C6 and the & plane drawn in the (second phase). Direction
of interlayer slip stress on the southern edge of the same folding (third phase)
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Fig. 16. Facies of the Gh supporting grain with imbrication at Station 7, A) The condition of the flat-oriented grains in
the current state of bedding, B) The condition of the flat-oriented grains in the horizontal state of the same bedding.

The direction of sediment flow is to the southeast.
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Fig. 17. A) View of conglomerate layering at Station 8 B) Gem supporting grainstone facies with erosional base with Gt
facies at its base C) Close-up of Gt facies underlying G cm facies, D) Ripple mark position in current layering, E) Ripple
mark position in horizontal layering. Sediment flow direction is southeast.
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Fig. 18. A) View of conglomerate and channel units among the Gem rock facies at Station 9, which is composed of finer
particles, B) Current state of bedding, cross-bedding, and ripple marks, C) Horizontal state of cross-bedding, and ripple
marks of the same bedding. The direction of sediment flow is southwest and northwest
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Fig. 20. Geological map of the studied area (Mafi, 2012: Ghaemi, 2007) and the direction of the maximum stress
corresponding to each station
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Fig. 20. a) The first phase of tension: Northward movement of the central Iranian subcontinent after the Triassic, based on
paleomagnetic data (Soffel et al., 1996); b) The second phase of tension: Slab pull to East-North-East under the Central Iran
plate Paleocene to Oligocene(Bosworth et al., 2005), ¢) The thired phase of tension: Oprning the mide oceanic ridge red sea

and Guulf of Adean to North-East in the Miocene to Recent(Bosworth et al., 2005). Paleogeographical map Redraawn from
(Barrier et al., 2008; Stampfli, 2000; Zhang et al., 2023)
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Fig. 21. Location of the forland basin in section AA' of figure 19 (slightly modified from Ghaemi, 2007; Mafi, 2012;
Sheikholeslami et al., 2019)
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Abstract

The Binalud mountain range with WNW-ESE extension in northeastern Iran is a place that has well
preserved all the structural evidences of the Paleotethys collision. Numerous previous studies have
investigated paleostress and its relationship with the tectonics and sedimentation of the Paleotethys. The
distinction of this research, however, lies in correlating the orientations of the principal stresses obtained
with global-scale stress directions.In this study, after separating the paleostress phases, analyzing the
paleogeography, studying the lithic and sedimentary units, and attributing them to the convergence that
occurred in the Paleotethys, the forland basin was identified. After field studies in Torqabeh region,
three phases were separated in metamorphic units of Permutrias age, granite of Upper Triassic-early
Jurassic age and conglomerate of Jurassic age. The first phase of tension with azimuth 32/335 is related
to Cimerian and the closure of Palotethys, the second phase with azimuth 25/047 is related to the Middle
Alps and coincides with the convergence of Neotethys at the location of Urmia-Dokhtar arc, and the
third phase with azimuth 31/032 is related to the late Alps it happened with the opening of the Red Sea
and the Gulf of Aden and the north-northeast movement of the Arabian Plate towards Iran. Also, the
study of Jurassic conglomerate deposits led to the identification of Gecm, Gh, and Gt rock facies, which,
based on previous studies, were formed in an alluvial fan sedimentary system and incised rivers under
the erosion and sedimentation system in the forland basin.

Keywords: Paleogeography, Forland basin, Binaloud mountain range, Alpine orogen, Cimmerian
orogeny

Introduction

The study area is located in northeastern Iran,
west of Mashhad city, between longitudes
59°20' to 59°25' E and latitudes 36°18' to
36°21' N. The region is bounded by the
Mashhad plain to the northeast and the
Binaloud Mountains to the southwest. The
Binaloud Range connects westward to the
Alborz Mountains and eastward to the
Parapamisus ~ Mountains  of  northern
Afghanistan. The occurrence of metamorphic-
ophiolitic complexes representing Paleotethys
remnants along the northern slopes of
Binaloud  demonstrates  the  intimate
relationship between the structural
development and evolution of these highlands,
the geotectonic evolution of the Paleotethys

Ocean, and the Cimmerian orogeny.
Paleotethys Ocean formation began in the
early Paleozoic due to rifting between the
Iranian and Turan plates. Rift expansion led to
sea formation and ultimately the development
of the Paleotethys Ocean. During the late
Paleozoic, this ocean began closing, eventually
resulting in deformation across northern Iran
and Afghanistan.

The earliest structural geological studies in
Binaloud were conducted by Majidi (1978) on
the metamorphic complex south of Mashhad
(northern slopes of the Binaloud Mountains),
identifying three metamorphic stages. Alavi
(1979, 1991) studied the Mashhad
metamorphic complex, interpreting it as
Paleotethys Ocean remnants with Late Triassic
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emplacement timing. He also proposed three
folding episodes and two generations of thrust
faulting (Cimmerian and Alpine),
characterizing the existing thrust systems as
bow-shaped duplex structures.

Ghaemi (1992) studied portions of the
Binaloud Mountains, introducing the thrust
system as a semi-covered hinterland duplex
based on stratigraphic evidence. According to
Rahimi (1992), the Binaloud Mountains have
three generations of thrust faults; thrusts (first
generation) involved in Cimmerian and Early
Alpine movements, thrusts (second
generation) involved in Middle Alpine
movements, and thrusts (third generation)
involved in Late Alpine movements.

Alizadeh (2009) determined the kinematic
component of shear zones in granitic bodies of
the Dahaneh area (west of Mashhad) as dextral
with reverse components, attributing them to
the Norian-Liassic time interval under
Cimmerian orogenic influence. Karimpour et
al. (2010), wusing wuranium-lead dating,
considered the formation of ductile shear zones
in Dahaneh granites as part of structural
changes resulting from Cimmerian orogenic
effects. Ghaemi and Rahimi (2014) again
identified and proposed three thrust
generations in the Binaloud Mountains based
on stratigraphic and structural evidence.
Sheikh-ol-Eslami et al. (2019) proposed three
deformation generations for the metamorphic
rocks south of Mashhad based on petrofabric
studies. Arshadinia et al. (2023) suggested two
stress phases for Paleotethys in northeastern
Iran in the Fariman area, located southeast of
Mashhad.

Materials & Methods

Paleostress analysis proves highly valuable for
determining structural evolution of fold belts,
particularly in regions with brittle tectonic
structures. Following the principle that stress
patterns change through time, paleostress
phase determination and differentiation
requires utilizing structures formed by stress
application that preserve their effects over
time. Qualitative and quantitative analysis of
brittle structures such as faults provides
suitable tools for this purpose.

Since stress application on rock units under
brittle conditions creates systematic arrays of
parallel lines (slickenlines) oriented along
maximum shear stress directions and
considering the utility of kinematic indicators

on fault planes for slip direction determination
(Doblas, 1998), paleostresses can be
determined through inversion techniques
based on slickenline orientations.

Data used for inversion include fault position,
dip and strike, related slickenline rake, and
movement sense. Slip sense determination
holds critical importance, achievable through
indicators such as stratigraphic separation,
drag folds, various asymmetric features
observable on fault surfaces including surface
roughness or polish, tectonic tool marks and
mineral step accumulations on slip planes,
Riedel fractures, stylolitic peaks, and others.
Additionally, structural age relationships must
be recorded at each station for stress phase
differentiation. Subsequently, software
performs  necessary calculations  using
collected fault data, followed by paleostress
phase differentiation in four-dimensional
space comprising three principal stress axis
positions (o1, 62, 63) and stress field ratio R.
One challenge in such calculations involves
discrepancy between measured maximum
shear stress direction (slickenline) and
calculated maximum shear stress direction
(through physical relationships). Carey and
Brunier (1974) and Angelier (1990) consider
angular misfit up to 30 degrees acceptable,
with values exceeding this threshold indicating
deviation from Gaussian curves related to
other stress phases.

For paleostress reconstruction along Binaloud
Range's northern margin and stress evaluation
from Permian to present, twelve stations were
investigated within the study area. Station
distribution encompasses geological
formations ranging from Permian to Jurassic
age. Based on fault plane strike and dip, stress
direction stereoplots were constructed using
Win tensor 5.9.2 software (Delvaux, 1997),
with fault movement direction indicated by
thin arrows and principal stress directions
marked by symbols (circle ol, triangle o2,
square 63). Finally, stress directions at stations
were differentiated and analyzed based on
geological unit age relationships, determining
paleostress directions.

Discussion and Results

After examining the regional fault network,
three distinct phases of stress were delineated
for the entire area. Metamorphic and granitic
rocks were divided into two phases, whereas
only one phase was identified in the
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conglomerate unit. The initial stress phase
occurs at azimuth 335.32° and is linked to the
Cimmerian event as well as to the closure of
the Paleotethys. In synchronicity with folding
along the 047.25° azimuth, the second stress
phase aligns with the Early Alpine stage linked
to Neotethys opening. Situated at azimuth
029.31° and apparent in metamorphic rocks,
granite, and conglomerate, the third phase
corresponds to the Late Alpine stage
coinciding with the onset of the East African
Rift. That the stress vectors rotated during this
interval implies that the Euler pole was
different for the two phases, indicating
convergence occurring at separate
localizations. In the same vein, the NE-SW
oriented stress axis in Phase 2 generated
thrusting in Binaloud, whereas Phase 3
afforded a NNE-SSW polarization formed an
oblique conjunction with regional faults,
thereby promoting strike-slip deformation in
Binaloud and the adjoining regions, as
reported by Sheikh-Al-Eslami (2019).
According to research by Alavi (1991) and
Rahimi & Ghaemi (2014), the north-south
stress field during the Late Triassic resulted
from Paleotethys closure in Binaloud,
concurrent with the Paleotethys event. The
northeast-southwest stress field occurred
simultaneously with Neotethys closure and the
Middle to Late Alpine events, which is also
evident in regional stress field changes.
Sedimentary characteristics indicate formation
in high-energy braided-river and alluvial-fan
environments. The diverse composition of
clastic fragments, imbricated fabric, and the
absence of floodplain deposits are key
indicators of this depositional environment.
These deposits formed within the foreland-
basin system and sedimentation associated
with the Cimmerian orogeny. The direction of
sediment movement, based on field
observations, was from north to south.

Conclusions

In the aftermath of exhaustive field surveys of
the regional fault network, a chronological
study from oldest to youngest formations
produced the following principal findings:

The study determined three separate stress
phases across the area: the first two influenced
both metamorphic and granitic rocks, whereas
the third phase was recorded solely in the
Shemshak Conglomerate.

The phase distribution plot indicated that the
initial bout of stress was active in all three units
(metamorphic, granitic, and conglomeratic),
whereas the ensuing second and third phases
manifested in every unit without exception.
Timing constraints: The absence of the first
phase record in the Shemshak Conglomerate
indicates that the Cimmerian event concluded
before the Jurassic and  Shemshak
Conglomerate deposition.

Structural correlation: The three identified
phases correspond to three generations of drifts
that have been mentioned in previous studies.
Based on these studies, the north-south stress
field during the Late Triassic resulted from
Paleotethys closure in Binaloud concurrent
with the Paleotethys event, while the
northeast-southwest stress field occurred with
Neotethys closure and Middle to Late Alpine
events, which is also reflected in regional
stress field changes.

Kinematic implications: The NE-SW stress
direction of the second phase generated thrusts
in Binaloud, whereas the NNE-SSW stress
direction of the third phase created an angular
relationship with regional faults, inducing
strike-slip motion in Binaloud and southern
areas.

In addition, the identification of the Gt, Gh, and
Gcem lithofacies indicates that these facies were
deposited in alluvial-fan and braided-river
environments. These facies developed under
erosional and depositional processes within a
foreland basin system, which has also been
mentioned in previous studies regarding this
depositional setting. The direction of sediment
movement, based on field observations, was
from north to south.



