Determining provenance and paleo-weathering conditions of Dahu Formation (lower Cambrian) sandstones by petrography and major elements geochemistry methods in Abyaneh section, Natanz west

Document Type : Research Paper

Authors

Abstract

In this study, petrological and geochemical characterizes of major elements of the Dahu Formation sandstones (lower Cambrian) in Abyaneh section which in west of Natanz, Central Iran have been investigated to specify the origin, tectonic setting and paleoweathering condition. According to petrological studies, sandstones in this region are fine to coarse grained with intermediate to good sorting. Generally these sandstones are identified as litharenite, sub-litharenite, quartz-arenite and partially pheldesphtic litharenite. By comparing major elements with UCC shows that all elements (except CaO and MnO) have depleted with respect to upper continental crust (UCC). Geochemical data in tectonic setting discernment diagrams show that sandstones were deposited in active continental margin mainly. High value (93) of chemical weathering index (CWI) suggests an intermediate igneous source rocks with wet and warm condition.

Keywords


منابع
[1] آقانباتی، ع (1389) زمین‌شناسی ایران: سازمان زمین‌شناسی و اکتشافات معدنی کشور، تهران.
[2] اعتماد سعید، ن.، حسینی­برزی، م (1388) ژئوشیمی عناصر اصلی ماسه­سنگ­های سازند لالون در مقطع باهمو، ایران مرکزی: با نگرشی بر سنگ مادر، شرایط هوازدگی قدیمه و جایگاه زمین­ساختی. فصلنامه زمین‌شناسی ایران، سال سوم، شماره نهم، بهار 1388، صفحات 65-53.
[3] حمدی، ب (1374) سنگ‌های رسوبی پرکامبرین، کامبرین در ایران. تهران.
[4] خلعتبری‌جعفری و علایی‌مهابادی (1375) نقشه زمین‌شناسی 1:100000 نطنز.
[5] Amireh, B. S (1991) Mineral composition of the Cambrian-Cretaceous Nubian series of Jordan: provenance, tectonic setting and climatological implications. Sedimentary Geology, 71(1-2), 99-119.
[6] Baron, M., and Parnell, J (2007) Relationships between stylolites and cementation in sandstone reservoirs: Examples from the North Sea, UK and East Greenland. Sedimentary Geology, 194(1), 17-35.
[7] Basu, A., Young, S. W., Suttner, L. J., James, W. C., and Mack, G. H (1975) Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Research, 45(4).
[8] Bhatia, M. R (1983) Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 611-627.
[9] Bhatia, M. R., and Crook, K. A (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to mineralogy and petrology, 92(2), 181-193.
[10] Condie, K. C., Dengate, J., and Cullers, R. L (1995) Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA. Geochimica et Cosmochimica Acta, 59(2), 279-294.
[11] Cullers, R. L (1994) The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the wet mountains region, Colorado, USA. Chemical Geology, 113(3), 327-343.
[12] Cullers, R. L (1995) The controls on the major-and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, USA. Chemical Geology, 123(1), 107-131.
[13] Cullers, R. L (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51(3), 181-203.
[14] Das, A., Krishnaswami, S., and Kumar, A (2006) Sr and 87Sr/86Sr in rivers draining the Deccan Traps (India): Implications to weathering, Sr fluxes, and the marine 87Sr/86Sr record around K/T. Geochemistry, Geophysics, Geosystems, 7(6).
[15] Dickinson, W. R (1985) Interpreting provenance relations from detrital modes of sandstones Provenance of arenites (pp. 333-361): Springer.
[16] Folk, R (1980) Petrography of sedimentary rocks: Hemphill Publishing Company.
[17] Getaneh, W (2002) Geochemistry provenance and depositional tectonic setting of the Adigrat Sandstone northern Ethiopia. Journal of African Earth Sciences, 35(2), 185-198.
[18] Grantham, J. H., and Velbel, M. A (1988) The influence of climate and topography on rock-fragment abundance in modern fluvial sands of the southern Blue Ridge Mountains, North Carolina. Journal of Sedimentary Research, 58(2).
[19] Guo, Q., Xiao, W., Windley, B. F., Mao, Q., Han, C., Qu, J., Yong, Y (2012) Provenance and tectonic settings of Permian turbidites from the Beishan Mountains, NW China: implications for the Late Paleozoic accretionary tectonics of the southern Altaids. Journal of Asian Earth Sciences, 49, 54-68.
[20] Harnois, L (1988) The CIW index: a new chemical index of weathering. Sedimentary Geology, 55(3), 319-322.
[21] Huckriede, R., Kursten, M., Venzlaff, H., and fur Bodenforschung, B (1962) Zur Geologie des Gebietes zwischen Kerman und Sagand (Iran): Vertrieb durch das Niedersachsische Landesamt fur Bodenforschung.
[22] Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., and Sares, S. W (1984) The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Research, 54(1), 103-116.
[23] Ingersoll, R. V., and Suczek, C. A (1979) Petrology and provenance of Neogene sand from Nicobar and Bengal fans, DSDP sites 211 and 218. Journal of Sedimentary Research, 49(4).
[24] Jafarzadeh, M., and Hosseini-Barzi, M (2008) Petrography and geochemistry of Ahwaz Sandstone Member of Asmari Formation, Zagros, Iran: implications on provenance and tectonic setting. Revista Mexicana de Ciencias Geológicas, 25(2), 247-260.
[25] Lacassie, J. P., Roser, B., Del Solar, J. R., and Hervé, F (2004) Discovering geochemical patterns using self-organizing neural networks: a new perspective for sedimentary provenance analysis. Sedimentary Geology, 165(1), 175-191.
[26] Mack, G. H (1978) The survivability of labile light‐mineral grains in fluvial, aeolian and littoral marine environments: the Permian Cutler and Cedar Mesa Formations, Moab, Utah. Sedimentology, 25(5), 587-604.
[27] Mcbride, E. F (1985) Diagenetic processes that affect provenance determinations in sandstone Provenance of arenites (pp. 95-113): Springer.
[28] McLennan, S., Taylor, S., McCulloch, M., and Maynard, J (1990) Geochemical and Nd Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54(7), 2015-2050.
[29] Mörk, M. B. E., and Moen, K (2007) Compaction microstructures in quartz grains and quartz cement in deeply buried reservoir sandstones using combined petrography and EBSD analysis. Journal of Structural Geology, 29(11), 1843-1854.
[30] Morton, A. C (1985) Heavy minerals in provenance studies Provenance of arenites (pp. 249-277): Springer.
[31] Nesbitt, H., and Young, G (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299 (5885), 715-717.
[32] Pettijohn, F (1975) Sedimentary Rocks. Harper and Row Publishers. New York.
[33] Pettijohn, F. J., Potter, P. E., and Siever, R (1987) Sand and sandstone: Springer Science & Business Media.
[34] Roser, B., and Korsch, R (1986) Determination of tectonic setting of sandstone-mudstone suites using content and ratio. The Journal of Geology, 635-650.
[35] Roser, B., and Korsch, R (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67(1), 119-139.
[36] Stöcklin, J., and Setudehnia, A (1971) Stratigraphic Lexicon of Iran. Ministry of Industry and Mines (pp. 376).
[37] Suttner, L. J., Basu, A., and Mack, G. H (1981) Climate and the origin of quartz arenites. Journal of Sedimentary Research, 51(4).
[38] Suttner, L. J., and Dutta, P. K (1986) Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. Journal of Sedimentary Research, 56(3).
[39] Taylor, S. R., and McLennan, S. M (1985) The continental crust: its composition and evolution.
[40] Tucker, M. E (2001) Sedimentary Petrology: an introduction to the origin of sedimentary rocks. London: Scientific Publication.
[41] Velbel, M. A., and Saad, M. K (1991) Palaeoweathering or diagenesis as the principal modifier of sandstone framework composition? A case study from some Triassic rift-valley redbeds of eastern North America. Geological Society, London, Special Publications, 57(1), 91-99.
[42] von Eynatten, H (2004) Statistical modelling of compositional trends in sediments. Sedimentary Geology, 171(1), 79-89.
[43] Weltje, G. J (1994) Provenance and dispersal of sand-sized sediments: reconstruction of dispersal patterns and sources of sand-sized sediments by means of inverse modelling techniques (Vol. 121): Utrecht University.
[44] Whitmore, G. P., Crook, K. A., and Johnson, D. P (2004) Grain size control of mineralogy and geochemistry in modern river sediment, New Guinea collision, Papua New Guinea. Sedimentary Geology, 171(1), 129-157.
[45] Yang, S., Wang, Z., Guo, Y., Li, C., and Cai, J (2009) Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication. Journal of Asian Earth Sciences, 35(1), 56-65.