Original mineralogy and determining depositional condition of the Akchagyl Formation based on elemental geochemistry analysis in southeastern Caspian Basin

Document Type : Research Paper

Authors

Abstract

The Pliocene deposits in northern Iran including Cheleken and Akchagyl stratigraphic units are considered as the most important elements of petroleum system in the Caspian Basin. The Cheleken stratigraphic unit is mainly composed of the coarse-grained red-coloured continental facies with the age of Early to Middle Pliocene, and the Akchagyl unit mainly consists of white-coloured carbonate-clastic facies with the Late Pliocene age. In the present research, three outcrops (Aghband, Somli Darreh and Yelli Badragh) in the northeastern part of the Gonbad-e Kavous area were measured as the thickest and oldest Tertiary sequences. The main purpose of the study is to determine original mineralogy and depositional conditions of the Akchagyl Formation using elemental geochemistry analysis in the measured surface sections.Variations of the major and minor elements in the Akchagyl carbonate samples indicate the aragonite and high-Mg calcite mineralogical composition. Sr/Ca versus Mn variations represents the presence of semi-closed diagenetic system during formation of the Akchagyl unit in the basin. The high Mn-values in mud-dominated samples indicates the sub-anoxic condition whereas the low values of Mn and high Sr contents in grain-dominated samples represent the effect of meteoric diagenesis (dissolution) in the depositional basin. Comparison of the major/minor elements values with the standard mean values in other sedimentary basins indicates a semi-closed basin during deposition of the Akchagyl in the Late Pliocene, and the upward salinity decreasing of the basin is due to the fresh water input and its connection to the global oceans in some time intervals of the Pliocene.

Keywords


آقانباتی، ع (1385) زمین­شناسی ایران. انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور، 708 ص.
آقانباتی، س. ع.، رضایی، ع (1388) هم­ارزی­های واحدهای چینه­نگاری سنگی در ایران در پهنه­های ساختاری- رسوبی عمده، سازمان زمین­شناسی و اکتشافات معدنی، پایگاه ملی داده­های علوم زمین کشور، 7 ص.
اتحاد، ک.، طاعتی، ف (1396) معرفی سازند آقچاگیل به عنوان پوش سنگ حوضة جنوب خزر، سومین همایش انجمن رسوب­شناسی ایران، مدیریت اکتشاف شرکت ملی نفت ایران، 19 و 20 اردیبهشت ماه، 6 ص.
احسانی، م (1384) بررسی لیتوفاسیس­ها و بیوفاسیس­های موجود در توالی چینه­ای آقچاگیل در شمال شرق گنبد کاووس، پایان­نامة کارشناسی­ارشد، سازمان زمین­شناسی و اکتشافات معدنی کشور، 91 ص.
رفیعی، ب (1379) رسوب­شناسی، محیط­رسوبی و ژئوشیمی سازندهای آقچاگیل و آپشرون در منطقة دشت مغان، شمال غرب ایران، پایان­نامة دکترا، دانشگاه تربیت معلم تهران، 122 ص.
رفیعی، ب.، امین سبحانی، ا (1380) ارتباط کانی­شناسی و محیط­رسوبی در گل­های غیردریایی و تعیین شوری قدیمی در پلیوسن فوقانی و پلئیستوسن در حوضة مغان، شمال­غرب ایران، مجلة علوم پایة دانشگاه آزاد اسلامی، 41، 3099- 3110.
سلطانی، ب.، بیرانوند، ب.، موسوی حرمی، ر.، هنرمند، ج.، طاعتی، ف.، مرادپور، م (1397) تغییرات رخساره و محیط رسوبی نهشته­های پلیوسن در منطقة جنوب شرق حوضة خزر، شمال شرق ایران، چهارمـین هـمایش انجمن رسوب­شناسی ایران، دانشگاه زنجان، زنجان، 2 و 3 آبان ماه، 6 ص.
مغفوری­مقدم، ا (1379) لیتواستراتیگرافی، بیواستراتیگرافی و پالئواکولوژی سازندهای آقچاگیل و آپشرون دشت مغان، رسالة دکتری زمین­شناسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، 151 ص.
Abdullayev, N. A., Riley, G. W., Bowman, A. P (2012) Regional Controls on Lacustrine Sandstone Reservoirs: The Pliocene of the South Caspian Basin, AAPG Memoir 95, p. 71–98. DOI: 10. 1306/13291385 M953446.
Allen, M. B., Armstrong, H. A (2008) Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling, Palaeogeography, Palaeoclimatology, Palaeoecology, 265: 52-88.
Andrusov, N. I (1986) Geological Studies in the Peninsula of Kerch in 1882 and 1883. Notes SOC. Natur. Novoross, 9: 2 (in Russian).
Agah, S. Bayat, A (1970) Geological Report of Mazandaran, GR. 322, pub pp. 10-29.
Berberian, M (1983) The southern Caspian: a compressional depression floored by a trapped, modified oceanic crust. Canadian Journal of Earth Sciences, 20: 163–183.
Berberian, M., King G. C. P (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci, 18: 210–265.
Brand, U. and Veizer, J (1980) Chemical diagenesis of multicomponent carbonate system, II: stable isotopes: Journal of Sedimentary Petrology, 51: 987-997.
Brunet, M.-F., Korotaev, M. V., Ershov, A.V.& Nikishin, A. M (2003) The South Caspian Basin: a review of its evolution from subsidence modelling. Sedimentary Geology, 156: 119–148.
Brunet, M. F., Wilmsen, M., Granath, J.W (2009) South Caspian to central Iran Basins, Geological Society of London, Spe, Publ. 312, 360 pp.
Clifton, H. E (2006) A re-examination of facies models for clastic shorelines. In: Facies Models Revisited (Eds Walker, R. G. & Posamentier, H.). Special Publication 84, Society of Economic Paleontologists and Mineralogists, Tulsa, OK; 293–337.
Dunham, R. J (1962) Classiication of carbonate rocks according to depositional texture. In: Classiication of carbonate rocks. American Association of Petroleum Geologists Memoirs, 1: 108–121
Faridi, Z (1964) Osracoda in the Plio-Pleistocene Shediment of Gorgan Mazandran (northern Iran) the bulthen of Iraian petroleum institute, 14: 532-535.
Flügel, E (2010) Microfacies of carbonate rocks: analysis, interpretation and application, 2nd edn. Springer, Berlin, p 984
Folk, R. L (1974) The natural history of crystalline calcium carbanate: effect of magnesium content and salinity: Jour. Sed. Petrology, 44: 40-53.
Gillet, S (1976) Le neogene da la region de Moghan (Azarbaidjan-Iranian) dapres la macrofauna, Paraktika Akad., Athin 42, PP. 57-78.
Kinsman, D. J. J., Holland, H. D )1969( The co-precipitation of cations with CaCO3. The co-precipitation of Sr2+ with aragonite between 16 and 96 ˚C. Geochimica et Cosmochimica Acta, 33: 1–17.
Land, L. S. and Hoops, G. K (1973) Sodium in carbonate sediments and rocks: a possible index to the salinity of diagenetic solutions: Journal of Sedimentary Petrology, 43:614-617.
Lohmann, K. C (1988) Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst, In, James, N.P. and Choquette, P.W., (Editors), Paleokarst: Springer-Verlag, New York, p. 58-80.
Mackenzie, F. T. and Pigott, J. D (1981) Tectonic controls of Phanerozoic rock cycling: Journal of Geological Society, 138: 183-196.
Maghfuri Moghadam, I (2013) Stratigraphy of Neogene Deposits in Northern Iran, Middle-East Journal of Scientific Research, 15 (6): 846–852.
Miall, A. D (2013) The geology of fluvial deposits: sedimentary facies, basin analysis, and petroleum geology. Springer, Berlin.
Miller, C. R., James, N. P., Bone, Y (2012) Prolonged carbonate diagenesis under an evolving late cenozoic climate; Nullarbor Plain, southern Australia. Sedimentary Geology, 261 (262): 33–49.
Milliman, J. D (1974) Marine Carbonates: New York, Springer-Verlag, 375 p.
Morrison, J. O. and Brand, U (1986) Geochemistry of recent marine invertebrates: Geoscience, Canada, 13: 237-254.
Morse, J. W. and Mackenzie, F. T (1990) Geochemistry of Sedimentary Carbonates: Elsevier, New York, 707 p.
Paramonova, N. P (1994) Istorija akchagylskich i sarmatskich mollyuskov. Tr. Paleontol. Inst. AN SSSR, vol. 220. Nauka, Moskva (in Russian).
Parcerisa, D., Gomez-Gras, D., Trave, A., Martin- Martin, J.D., Maestro, E (2006) Fe, Mn in calcites cementing red beds: a record of oxidation-reduction conditions examples from the Catalan Coastal Ranges (NE Spain). Journal of Geochemical Exploration, 89: 318-321.
Pingitore, N. E., Eastman, M. P., Sandidge, M., Oden, K. and Freiha, B (1988) The coprecipitation of manganese (II) with calcite, an experimental study: Marine Chemistry, 25: 107-120.
Popov, S. V., Ilyina, L. B., Paramonova, N. P., Goncharova, I. A., et al., (2004) Lithological-paleogeographic maps of Paratethys. Cour. Forsch.Inst. Senckenb, 250: 1–46 (10 maps).
Popov, S. V., Shcherba, I. G., Ilyina, L. B., Nevesskaya, L. A., Paramonova, N. P., Khondkarian, S. O. & Magyar, I (2006) Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 238: 91-106.
Rao, C. P (1996) Elemental composition of marine calcite from modern temperate shelf brachiopods, bryozoans and bulk carbonates, eastern Tasmania, Australia: Carbonates and Evaporites, 11: 1-18.
Rao, C. P (1991) Geochemical differences between subtropical (Ordovician), temperate-(Recent and Pleistocene) and subpolar (Permian) carbonates, Tasmania, Australia: Carbonates and Evaporites, 6: 83-106.
Robert, A. M. M., Letouzey, J., Kavoosi, M. A., Sherkati, Sh., Muller, C., Verges, J., Aghababaei, A (2014) Structural evolution of the Kopeh Dagh fold-and-thrust belt (NE Iran) and interactions with the South Caspian Sea Basin and Amu Darya Basin. Marine and Petroleum Geology, Elsevier, 57: 68-87. <10.1016/j.marpetgeo.2014.05.002.
Rögl, F (1999) Mediterranean and Paratethys, Facts and hypothesis of an Oligocene to Miocene paleogeography (short review), Geologica Carpathica, 50 (4): 339-349.
Rögl, F., Steininger, F. F (1983) Vom Zerfall der Tethys zu Mediterran und Paratethys. Ann. Naturhist. Mus. Wien, 85/ A: 135-163.
Sandberg, P. A (1983) An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy: Nature, 305: 497-537.
Scoffin, T. P, Stoddard, D. R (1983) Beach rock and intertidal cements. In: Goudie, A. S., Pye, K. (Eds.), Chemical sediments and geomorphology. Academic Press, London, pp. 401-425.
Smith-Rouch, L. S (2006) Oligocene–Miocene Maykop/Diatom Total Petroleum System of the South Caspian Basin Province, Azerbaijan, Iran, and Turkmenistan: U. S. Geological Survey Bulletin 6607-I, 61 p.
Soltani, B., Beiranvand, B., Moussavi-Harami, R., Honarmand, J., Taati, F (2020) Facies Analysis and Depositional Setting of the Upper Pliocene Akchagyl Formation in Southeastern Caspian Basin, NE Iran, Carbonates and Evaporites, 35,8, DOI: 10.1007/s13146-01900537-9.
Tucker, M. E. and Wright, V. P (1990) Carbonate sedimentology: Blackwell Scientific Publications, London, 482 p.
van Back, C. G. C (2010) Glacio-Marine Transgressions of the Early and Middle Pleistocene Caspian Basin, Azerbaijan. Paleomagnetic Laboratory “Fort Hoofddijk”, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlands.
Veizer, J (1983) Trace elements and stable isotopes in sedimentary carbonates: Reviews in Mineralogy, 11: 265-300.
Veizer, J., Clayton, R. N., Hinton, R. W., Von Brunn, V., Mason, T. R., Buck, S. G. and Hoefs, J (1990). Geochemistry of Precambrian carbonates: 3-shelf seas and non-marine environments of the Archean. Geochimica et
Cosmochimica Acta, 54: 2717-2729.
Veizer, J. and Demovic, R (1973) Environmental and climatic controlled fractionation of elements in the Mesozoic carbonate sequence of the western Carpathians: Journal of Sedimentary Petrology, 43(1): 258-271.
Wilkinson, B. H., Owen, R. M., Carroll. A. R (1985) Subrnarine hydrothermal weathering, global eustasy, and carbonate polyn-rorphism in Phanerozotc marine oolites. Journal olSedimentary Petrology, 55: l7l-183.
Winefield, P. R., Nelson, C. S. and Odder, A. P. W (1996) Discriminating temperate carbonates and their diagenetic environments using bulk elemental geochemistry: a reconnaissance study based on New Zealand Cenozoic limestones: Carbonates and Evaporites, 11: 19-31.
Yassini, I (1981) Paratethys Neogene deposits from the southern Caspian sea, the bulletin of Iranian petroleum institute, 38: 1–24.