Post-depositional history of Asmari Formation using petrographic as well as carbon and oxygen isotopes date in Hyderabad and Robat Namaki sections, north of Khorramabad

Author

Abstract

In northern region of Khorramabad city in Lurestan province, Asmari Formation is mainly composed of limestone with some interbeds of marl. The studied Formation, is late Oligocene-Early Miocene in age. In this study, petrographic studies as well as stable isotopes of oxygen and carbon have been used to make an understanding of after sedimentation conditions. We also have identified and distinguished some evidence from each diagenetic stage. Consideration of the cements, which have been deposited in cavities and fractures of carbonate rocks shows that sometimes there are differences in the isotopic oxygen content and carbon content of the edge and central parts. However, these changes in many cases are slight. Numerous diagenetic processes such as calcite cementation (syntaxial overgrowth cement, isopachous fibrous, spar mosaic cement, blocky cement, and granular cement), iron oxide cement, pyrite, limited dolomitization, micritiization, bioturbation, fractures and fillings and dissolution, incremental neomorphism, physical and chemical compaction (stylolite and stilomotel) have been affected the limestone successions of Asmari Formation in the study area. Some of these processes may occur in several diagenetic environments. In order to differentiate them, we have used cathodoluminescence and isotope study techniques. We have been utilized the oxygen and carbon stable isotopes track each diagenetic phase. In this study, we have used cathodoluminescence images to make a map for isotopic analysis. Finally, by integrating petrographic, cathoduminescence, and isotopic data, different diagenetic environments have been identified and distinguished. We hope this information make a more accurate picture of after sedimentation conditions of the sedimentary Basin.

Keywords


فضلی، ل.، رضایی­پرتو، ک (1401) آنالیز رخساره‌ها، شرایط رسوبی و ﻓﺮاﻳﻨﺪﻫﺎی دﻳﺎژﻧزی مخزن آسماری در میدان نفتی قلعه‌نار، نشریه رسوب­شناسی کاربردی، دوره 10، شماره 19، ص 232-246.
اسدی­مهماندوستی، الف.، معلمی، س، ع.، دانشیان، ج.، لشگری، س (1398) تعیین هندسه ساختاری سازند آسماری و بررسی روند تغییرات آن در حوضه رسوبی زاگرس با استفاده از روش مدل­سازی چینه­ای رو به جلو، نشریه رسوب­شناسی کاربردی، دوره 7، شماره 14، ص 1-14.
Ahmad, A. H. M., Bhat, G. M. and Khan, M. H. A (2006) Depositional environments and diagenesis of the kuldhar and Keera Dome carbonates (Late Bathonian–Early Callovian) of Western India. Journal of Asian Earth Sciences, 27(6): 765-778.
Cañaveras, J. C., Sánchez-Moral, S., Calvo, J. P., Hoyos, M. and Ordóñez, S (1996) Dedolomites associated with karstification. An example of early dedolomitization in lacustrine sequences from the Tertiary Madrid Basin, Central Spain. Carbonates and Evaporites, 11(1): 85-103.
Choquette, P. W. and Pray, L. C (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG bulletin, 54(2): 207-250.
Dickson, J. A. D (1966) Carbonate identification and genesis as revealed by staining, Journal of Sedimentary Petrology, 36: 441-505.
Emiliani, C (1955) Pleistocene temperatures. The Journal of geology, 63(6): 538-578.
Fantle, M. S., Barnes, B. D. and Lau, K. V (2020) The role of diagenesis in shaping the geochemistry of the marine carbonate record. Annual Review of Earth and Planetary Sciences, 48: 549-583.
Gregg, J. M. and Sibley, D. F (1984) Epigenetic dolomitization and the origin of xenotopic dolomite texture. Journal of Sedimentary Research, 54(3): 908-931.
Heidari, A., Gonzalez, L. A., Mahboubi, A., Moussavi-Harami, R., Ludvigson, G. A. and Chakrapani, G. J (2014) Diagenetic model of carbonate rocks of Guri Member of Mishan Formation (lower to middle Miocene) SE Zagros Basin, Iran. Journal of the Geological Society of India, 84(1): 87-104.
Heidari, A., Shokri, N., Ghasemi-Nejad, E., Gonzales, L. and Ludvigson, G (2015) Application of petrography, major and trace elements, carbon and oxygen isotope geochemistry to reconstruction of diagenesis of carbonate rocks of the Sanganeh Formation (Lower Cretaceous), East Kopet-Dagh Basin, NE Iran. Arabian Journal of Geosciences, 8(7): 4949-4967.
Hurley, N. F. and Lohmann, K. C (1989) Diagenesis of Devonian reefal carbonates in the Oscar Range, Canning Basin, Western Australia. Journal of Sedimentary Research, 59(1): 127-146.
López-Quirós, A., Barbier, M., Martín, J. M., Puga-Bernabéu, Á. and Guichet, X (2016) Diagenetic evolution of Tortonian temperate carbonates close to evaporites in the Granada Basin (SE Spain). Sedimentary Geology, 335: 180-196.
Macdonald, F. A., Schmitz, M. D., Crowley, J. L., Roots, C. F., Jones, D. S., Maloof, A. C., Strauss, J. V., Cohen, P. A., Johnston, D. T. and Schrag, D.P (2010) Calibrating the cryogenian. science, 327(5970):1241-1243.
Moore, C. H (1989) Carbonate diagenesis and porosity. Elsevier.
Paganoni, M., Al Harthi, A., Morad, D., Morad, S., Ceriani, A., Mansurbeg, H., Al Suwaidi, A., Al-Aasm, I.S., Ehrenberg, S.N. and Sirat, M (2016) Impact of stylolitization on diagenesis of a Lower Cretaceous carbonate reservoir from a giant oilfield, Abu Dhabi, United Arab Emirates. Sedimentary Geology, 335: 70-92.
Sami, T. T. and James, N. P (1996) Synsedimentary cements as Paleoproterozoic platform building blocks, Pethei Group, northwestern Canada. Journal of Sedimentary Research, 66(1).
Sandberg, P. A (1975) New interpretations of Great Salt Lake ooids and of ancient non‐skeletal carbonate mineralogy. Sedimentology, 22(4): 497-537.
Sandberg, P. A (1983) An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305(5929): 19-22.
Shi, P., Tang, H., Wang, Z., Sha, X., Wei, H. and Liu, C (2020) Carbonate diagenesis in fourth-order sequences: A case study of yingshan formation (Lower Ordovician) from the yubei area-Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 195:107756.
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A., Diener, A., Ebneth, S., Godderis, Y. and Jasper, T (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical geology, 161(1-3): 59-88.
Wilkinson, B. H., Owen, R. M. and Carroll, A. R (1985) Submarine hydrothermal weathering, global eustasy, and carbonate polymorphism in Phanerozoic marine oolites. Journal of Sedimentary Research, 55(2): 171-183.
Zachos, J. C. and Kump, L. R (2005) Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene. Global and Planetary Change, 47(1): 51-66.