Facies analysis, sedimentary environment and sequence stratigraphy of Miocene deposits in the Haft Cheshmeh section, NE of Nourabad, Sanandaj - Sirjan Zone

Document Type : Research Paper

Authors

Abstract

The Miocene deposits are exposed in the Nourabad region of Sanandaj Sirjan Zone.  In this study, one surface section (Haft cheshmeh) with a thickness of 125 m has been studied in order to determine the sedimentary environment and sequense stratigraphy. The lower boundary of Miocene deposits in the studied section is sharp with ophiolitic unit (E1v) and the upper boundary is erosional. The Miocene deposits in the studied area are mainly characterized by marl and thin to thick bedded limestone.Also based on the field observations, petrographic studies, textural and facial characteristics, as well as the abundance and distribution of foraminifera and other components,19 carbonate microfacies have been identified. These carbonate microfacies were deposited in 5 facies belts including lower slope, upper slope, margin, platform-margin sand shoals and lagoon facies.The existence of barrier reefs, intraclasts, oncoids, aggregate grains and the abrupt facies changes, also absence of widespread intertidal flat and the re-deposited carbonates (calciturbidites) represent that this sequence deposited on a rimmed carbonate platform. Sequence stratigraphy analysis led to identification of three 3rd order depositional sequences bounded by type I and type II sequence boundaries. The sequence 1 consists of TST and HST system tracts. This sequence is characterized by open marine, margin, sand shoals and lagoon facies. The lower boundary of this sequence is a sequence boundary type 1 (SB1)with ophiolitic unit (E1v)and the upper boundary is a sequence boundary type 2 (SB2) with sequence 2.The sequence 2 consists of TST and HST system tracts and is characterized by open marine, sand shoals and lagoon facies.The lower and upperboundaries of sequence 2 are sequence boundary type 2 (SB2).The sequence 3 consists of TST and HST system tracts and is characterized by open marine, sand shoals and lagoon facies. The lower and upper boundaries of sequence 3 are sequence boundaries type 2 andtype 1, respectively.

Keywords


[1]   مطیعی، ه (1372) چینه­شناسی زاگرس، انتشارات سازمان زمین­شناسی کشور، 536 صفحه.
[2]  Adabi, M.H., and Mehmandosti, A.E (2009) Microfacies and geochemistry of the Ilam Formation in the Tang-E-Rashid area, Izeh, S.W. Iran, J. of Asian Earth Sciences, v. 33, p. 267-277.
[3]  Adachi, N., Ezaki, Y., and Liu, J (2004) The origins of peloids immediately after the end-permian extinction, Guizhou Province, South China: Sedymentary Geology, v. 164,p. 161-178.
[4]  Allen, P.A., and Allen, J.R (2013) Basin Analysis: Principles and Application to Petroleum Play Assessment: Wiely- Blackwell, 655pp.
[5]  Armella, C., Cabaleri, N., and Leanza, H.A (2007) Tidally  dominated,  rimmedshelf  facies  of  the  Picún  Leufú  Formation  (Jurassic/Cretaceous  boundary)  in southwest Gondwana, Neuquén Basin, Argentina. Cretaceous Research, v. 28, p. 961 -979.
[6]  Bachmann, M., and Hirisch, F (2006) Lower Cretaceous carbonate platforme  of  the  eastern  Levant (Galilee and the Golan Heights),  Stratigraphy and second order sea-level  change:  Cretaceous  Research, v. 27, p. 478-512.
[7]  Bahamonde, J.R  (2007) Marine red staining of a Pennsylvanian carbonate slope:  Environmental oceanographic significance. Journal of Sedimentary Research, v. 77, p. 1026-1045.
[8]  Bover-Arnal, T., Salas, R., Guimerà, J., and Moreno-Bedmar, J.A (2014) Deep incision on an Aptian carbonate succession indicates major sea-level fall in the Cretaceous. Sedimentology, v. 61, p. 1558–1593.
[9]  Bover-Arnal, T., Pascual-Cebrian, E., Skelton, P.W., Gili, E., and Salas, R (2015) Patterns in the distribution of Aptian rudists and corals within a sequence-stratigraphic framework (Maestrat Basin, E Spain). Sedimentary Geology, v. 321, p. 86–104.
[10]   Betzler, C., Pawellek, T. Abdullah, M. and Kossler, A (2006)  Facies  and  stratigraphic  architecture of the Korallenoolith Formation  in  North  Germany (Lauensteiner  Pass,  Ith  Mountaines): Sedimentary Geology, v. 194, p. 61-75.
[11]   Boggs, S.J (2015) Principles of Sedimentology and Stratigraphy (6 th edition): University of Oregon, 660pp.
[12]   Booler, (2002) Distribution and geometry of facies and early diagenesis: the key to accommodation space variation and sequence stratigraphy: Upper Cretaceous Congost Carbonate platform, Spanish Pyrenees, Sedimentary Geology, v. 146, p. 225– 247.
[13]   Brachert, T.C., Forst, M.H., and Pais, I.J (2001) Lowstand carbonate, highstand sandstone. Journal of Sedimentary Geology, v. 122, p. 155, 1-12.
[14]   Cadjenovic, D., Kilibarda, Z., and Radulovic, N (2008) Triassic to Late  Jurassic  evolution  of the Adriatic carbonate platform and  Budva Basin, Southern Montenegra:  Sedimentary  Geology, v. 24, p. 1-17.
[15]   Carannante, G., Ruberti, D., Simone, L., and Vigliotti, M (2007) Cenomanian  carbonate  depositional  settings: case  histories  from  the  central-southern Apennines  (Italy),  In:  Scott, R., (Eds.), Cretaceous rudist and  carbonate platform: environment feedback, SEPM, S.P, v. 87, p. 257.
[16]   Carpentier, C., Martin-Garin, B.,  Lathuilière,  B., Gaillard, C.,  Ferry, S., Hantzpergue,  P.,  and Geister, J (2004) Coral-microbialite  reefs in pure carbonate versus mixed  carbonate–siliciclastic depositional  environments:  the  example  of the Pagny-sur-Meuse section (Upper Jurassic, northeastern France). Facies, v. 50, p. 229-255.
[17]   Daizhao, C., Tucker, M.E., Jingquan, Z., and Maosheng J (2002) Carbonate platform  evolution:  from  a  bioconstructed  platform  margin to as shoal  system (Devonian, Guilin, South China). Sedimentology, v. 49, p. 737-764.
[18]   Della Porta, G., Kenter, J.A.M., Bahamonde, J.R., Immenhauser, A., and Villa, E (2002) Microbial boundstone dominated carbonate slope (Upper Carboniferous, NSpain): microfacies, facies distribution stratal geometry. Facies, v. 49, p. 175–207.
[19]   Della Porta, G., Kenter, J.A.M., and Bahamonde, J.R (2003) Depositional facies and stratal geometry of an Upper Carboniferous prograding and aggrading highrelief carbonate platform  (Cantabrian  Mountains,  N  Spain).  Sedimentology, v. 51, p. 26 7 – 295.
[20]   Dill, H.G., Khishigsuren, S., Melcher, F., Bulgamaa, J., Bolorma, Kh., Botz, R., and  Schwarz-Schampera, U (2007)  Facies-related  diagenetic  alteration  in lacustrine-deltaic  red  beds  of  the  Paleogene  Ergeliin  Zoo  Formation  (Erdene Sum area, S. Gobi, Mongolia). Journal of Sedimentary Geology, v. 181, p. 1–24.
[21]   Dunhum, R. J (1962) Classification of carbonate  rocks  according  to depositional texture: in, Ham, W. E. (eds.), Classification of carbonates rocks-A symposium; AAPG, v. 1, p. 108-121.
[22]   Eberli, G.P (1987) Calcareous Turbidites and their relationship to sea- level fluctuations and tectonism. in: G. Einsele, W. Ricken, and A. Seilacher (Eds.), Cycles and Events in Stratigraphy. Springer, Verlag, v. 33, p. 340- 359.
[23]   El-Azabi, M.H., and El-Araby, A (2007) Depositional framework and sequence stratigraphic  aspects  of  the  Coniacian–Santonian mixed siliciclastic/carbonate Matulla sediments in Nezzazat and Ekma blocks, Gulf of Suez, Egypt. Journal of African Earth Sciences, v. 47, p. 179–202
[24]   Embry, A.F., and Kloven, J.E (1971) A Late Devonian reef tract on northeastern Banks Island, Northwest Territories, Bulletin Canadian Petroleum Geology, v. 19, p. 730-781.
[25]   Fagerstrom, J.A (1991) Reef-building guilds and a checklist for determining guild membership. Coral Reefs, v. 10, p. 47-52.
[26]   Flügel, E(2010) Microfacies of Carbonate Rocks Analysis, Interpretation and Application Second Edition. Springer, Berlin-Heidelberg, New York,1006pp.
[27]   Fürsich, F., Dhirendra, T., and Pandey. K (2003) Sequence  stratigraphic significance  of sedimentary cycles and shell  concentrations  in  the  Upper Jurassic–Lower  Cretaceous of Kachchh, western India.  Palaeogeography, Palaeoclimatology, Palaeoecology, v. 193.2, p. 285-309.
[28]   Gómez-Pérez, I., Fernádez-Mendiola, P.A., and Garciá-Mondéjar, J (1999) Depositional  architecture of a rimmed  carbonate  platform  (Albian, Gorbea, western Pyrenees). Sedimentology, v. 46, p. 337–356.
[29]   Haas, J., Götz. A.E., Pálfy, J (2010) Late  Triassic  to  Early  Jurassic palaeogeography  and eustatic history in the NW Tethyan realm: New insights from  sedimentary  and  organic facies of the Csővör Basin  (Hungary). Palaeogeography, Palaeoclimatology,  Palaeoecology, v. 291, p. 456–468.
[30]   Heldt, M., Bachmann, M., and Lehmann, J (2008) Microfacies, biostratigraphy and  geochemistry of the  hemipelagic  Barremian-Aptian  in  north  central  Tunisia:  Influence  of  the  OAE  1a  on  the  southern  Tethys margin:  Palaeos, v. 261, p. 246-260.
[31]   Haq, B.U., Hardenbol, J. and Vail, P.R (1987) Chronology of  fluctuating sea levels since the Triassic. Science, v. 235.P.1156-1167.
[32]   Kenter, J.A.M., Harris, P.M., and Della Porta, G (2005) Steep microbial boundstonedominated  platform  margins-examples implica- tions. Sedimentary Geology, v. 178, p. 5– 30.
[33]   Kenter, J.A.M., Ginsburg, R.N., and Troelstra, S.R (2001) Sea-level driven sedimentation patterns on the slope margin. In: Ginsburg RN, editor. Subsurface geology of a prograding carbonate platform margin, Great Bahama Bank: results of the Bahamas drilling project. Special Publication-SEPM, v. 70, p. 61-100.
[34]   Kruse, P.D., and Zhuravlev, A. Yu (2008)  Middle–Late Cambrian RankenellaGirvanella reefs of the Mila Formation, northern Iran. Canadian Journal Earth Science, v. 45, p. 619–639.
[35]   Laursen, G. V., Monibi, S., Allan, T. L., Pickard, N. A., Hosseiney, A., Vincent, B., Hamon, Y., Van-Buchem, F. S. P., Moallemi, A., and Druillion, G (2009) The Asmari Formation Revisited: Changed Stratigraphic Allocation and New Biozonation, First International Petroleum Conference & Exhibition, Shiraz, EAGE.
[36]   Myrow, P.M., Tice, L., Archuleta, B., Clark, B., Taylor, J.F., and Ripperdan, R.L (2004) Flat- pebble conglomerate: its multiple origins and relationship to metrescale depositional cycles. Sedimentology, v. 51, p. 973–996.
[37]   Marangon, A., Gattolin, G., Della Porta, G., and Preto, N (2011) The Latemar: A flat-topped,  steep fronted  platform  dominated  by microbialites and synsedimentary cements. Sedimentary Geology, v. 240, p. 97-114.
[38]   Miall, A.D (2010) The Geology of  Stratigraphic Sequences (2 nd Edition):  Springer-  verlag,  522 pp.
[39]   Reijmer, J.J.G., Palmieri, P., and Groen, R (2012) Compositional variations in calciturbidites and  calcidebrites  in  response  to sea-level fluctuations (Exuma Sound, Bahamas). Facies, v. 58, p. 493–507.
[40]   Tucker, M.E (2011) (4 th edition), Sedimentary Rocks in the Field: John Wiley and Sons, 238pp.
[41]   Tucker, M.E., and Wright, V.P (1990) Carbonate Sedimentology. Blackwell, Oxford, 482 pp.
[42]   Van Buchem, F.S.P., Allan, T.L., Laursen, G.V., Lotfpour, M., Moallemi, A., Monibi, S., Motiei, H., Pickard, N.A.H., Tahmasbi, A.R., Vedrenne, V., and Vincent, B (2010) Regional stratigraphic architecture and reservoir types of the Oligo-Miocene deposits in the Dezful Embayment (Asmari and Pabdeh Formations), SW Iran. Geological Society, v. 329, p. 219-263.
[43]   Warren, W.J (2000) Dolomite: Occurrence, evolution and economically important association, Earth science review, v. 52, p. 1-81.
[44]   Wilmsen, M., and Nagm, E (2012)  Depositional  environments  and  facies development of the Cenomanian–Turonian Galala Maghra el Hadida formations of  the  Southern Galala Plateau  (Upper  Cretaceous,  Eastern  Desert,  Egypt).  Facies, v. 58, p. 229–247.
[45]   Wilson, J.L (1975) Carbonate Facies in Geological History. Springer -Verlag, Berlin, 471pp.