Elemental geochemistry and petrography of Talehzang Formation (Northern edge of Rite anticline, southwest Lorestan) applied to analysis of diagenesis systems and primary mineralogical type

Authors

1 Assoc. Prof., Dept., of Geology, Faculty of Science, Lorestan University, Khorramabad, Iran

2 Ph. D., student sedimentology and sedimentary rocks, Faculty of Science, Bu Ali Sina University, Hamedan, Iran

Abstract

The purpose of this research is to investigate the primary mineralogy and the type of diagenesis systems of the Telehzang Formation (Paleocene-Middle Eocene) in the south-west of Lorestan based on elemental geochemistry and petrography. The change trend of Sr element to Na compared to Mn showed that the studied samples are in the range of Gordon aragonite limestones of Tasmania or in its vicinity, but with a similar trend. Also, the trend of changes of Mn element against Sr in the studied samples showed that these samples are in the same range as the primary mineralogy of the aragonite carbonates of the Mozduran Formation, which is a proof of the aragonite mineralogy of the primary limestones of the Talehzang Formation in the section under study. The high ratio of strontium to manganese (average 63.70), strontium to calcium (average 21.01), low amounts of iron (average 1.75 ppm) and manganese (average 24.70 ppm) and the high proportion of strontium element (average 750.35 ppm) in the studied samples and plotting Sr/Ca values ​​against Mn, Mg, Fe elements indicate a dominant closed to slightly open diagenesis system in a weak and with the few exchange of water-to-rock ratio (W/R) for the carbonates of Telehzang Formation. Early aragonite mineralogy, mild and long-term erosional discontinuity, weather and rock's inherent controls such as permeability, early mineralogy and diagenesis potential could have been an important controller in the amount of water-to-rock ratio that caused The upper part of this sequence was affected by weak meteoric diagenesis and created a slightly open weak diagenesis system. Based on petrographic studies, the constituent cements in the studied sections are often related to marine diagenetic environments, deep burial, shallow burial close to the surface and weak meteoric diagenesis, and the biological components are slightly affected by dissolution. They are from meteoric diagenesis and therefore the dominant diagenesis system in the discussed sequence is a closed diagenesis system and it opens slightly towards the top of the sequence.

Keywords


آدابی، م. ح (1390) ژئوشیمی رسوبی، انتشارات آرین زمین، چاپ دوم، 503 ص.
پیریایی، ع.، فیضی، ا.، صوفیانی، ح.، همت، س.، معتمدی، ب (1393) پالئوژئوگرافی نهشته­های ترشیاری زاگرس، گزارش داخلی مدیریت اکتشاف نفت، شماره - GR2362، 207 ص.
زهدی، ا (1386) ژئوشیمی، دیـاژنز و محیط رسـوبی سازند تله­زنگ در مقطع نمونه در تاقدیس لنگر (دزفول) و  مقایسۀ آن با مقطع سطح­الارضی تاقدیس کیالو (دهلران)، پایان­نامه کارشناسی­ارشد، دانشگاه شهید بهشتی، 154 ص.
زهدی، ا.، و آدابی، م. ح (1388) رسوب­گذاری، دیاژنز و زمین شیمی سازند تله­زنگ، جنوب لرستان، فصلنامه علوم­زمین، شماره 71 ، ص 105 تا 114.
شلالوند، م (1398) ژئوشیمی، دیاژنز و محیط­رسوبی نهشته­های کربناته سازند تله­زنگ در جنوب و جنوب غرب کرمانشاه، پایان­نامه کارشناسی­ارشد، دانشگاه شهید بهشتی، 213 ص.
شلالوند، م.، آدابی، م. ح.، زهدی، ا (1398 الف) محیط رسوبی، چینه­نگاری سکانسی و ژئوشیمی عنصری سازند تله­زنگ در جنوب کرمانـشاه، نشریه پژوهش­های چیـنه­نگاری و رسوب­شناسی، دوره 35، شماره 2، ص 25 تا 48 .
شلالوند، م.، آدابی، م. ح.، و زهدی، ا (1398 ب) سنگ­نگاری، زمین­شیمی و مدل دولومیتی شدن سازند تله­زنگ (پالئوسن پسین- ائوسن پیشین) در جنوب و جنوب باختر کرمانشاه، نشریه رسوب­شناسی کاربردی، دوره 7، شماره 13، ص 149 تا 166.
فیض­نیا، س (1377) سنگ­های رسوبی کربناته، آستان قدس، دانشگاه امام رضا (ع)، 304 ص.
مطیعی، ه (1372) زمین­شناسی ایران، چینه­شناسی زاگرس، انتشارات سازمان زمین­شناسی کشور، 536 ص.
مطیعی، ه (1382) زمین­شناسی ایران، چینه­شناسی زاگرس، سازمان زمین­شناسی و اکتشافات معدنی کشور، 536 ص.
مغفوری­مقدم، ا (1386) ریزچینه­نگاری سازند تله­زنگ در حوضه لرستان، فصلنامه زمین­شناسی کاربردی، سال 3، شماره 4، ص 284- 294.
Adabi, M. H., and Rao, C. P (1991) Petrographic and geochemical evidence for original aragonite mineralogy of Upper Jurassic carbonates (Mozduran Formation), Sarakhs area, Iran: Sedimentary Geology, 72 (3-4) 253-267.
Adabi, M. H., and Asadi-Mehmandosti, E (2008) Microfacies and geochemistry of the Ilam Formation in the Tang-E Rashid area, Izeh, S.W. Iran. Journal of Asian Earth Sciences, 33: 267-277.
Adabi, M. H., Kakemem, U. and Sadeghi A (2015) Sedimentary facies, depositional environment and sequence stratigraphy of Oligocene- Miocene shallow water carbonates from the Rig Mountain, Zagros basin (SW Iran). Carbonates and Evaporites, 23(2): 1-17.
Adabi, M. H. and Rao, C. P (1991) Petrographic and geochemical evidence for original aragonitic mineralogy of Upper Jurassic carbonate (Mozduran Formation) Sarakhs area, Iran. Sedimentary Geology, 72: 253-267.
Adabi, M. H., Salehi, M. A., and Ghabeishavi, A (2010) Depositional environment, and sequence stratigraphy and geochemistry of Lower Cretaceous carbonates (Fahliyan Formation), S.W. Iran. Journal of Asian Earth Sciences, 39: 148-160.
Ahmad, A. H. M., and Bhat, G. M (2006) Petrofacies, provenance and diagensis of the Dhosa sandstone member (Chari Formation) at Ler, Kachch Sub – basin, Western, India, Journal of Asian Earth Science, 27: 857- 872.
Alavi, M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforland evolution. American Journal of Science, 304: 1-20.
Anderson, T. F., & Arthur, M. A (1983) Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenviromental problems. In: Stable isotope in sedimentary geology. Society of Economic Paleontologists and Mineralogists, Short Course, 10: 1-151.
Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P., and Worden, R. H (2009) Carbon, oxygen, and strontium isotope geochemistry of carbonate rocks of the upper Miocene Kudankulam Formation, southern India: Implications for paleoenvironment and diagenesis: Geochemistry, 69 (1): 45-60.
Arosi, A. H., Wilson, M. E., J (2015) Diagenesis and fracturing of a large-scale, syntectonic carbonate platform, Sedimentary Geology, 326: 109–134.
Asadi Mehmandosti, E., and Adabi, M. H (2013) Application of geochemical data as evidence of water-rock interaction in the Sarvak formation, Izeh Zone, Zagros, Iran. Procedia Earth and Planetary Science, 7: 31-35.
Asadi Mehmandosti, E., Adabi, M. H., and Woods, A. D (2013) Microfacies and geochemistry of the Middle Cretaceous Sarvak Formation in Zagros Basin, Izeh Zone, SW Iran. Sedimentary Geology, 293: 9–20
Bathurst, R. G. C (1975) Carbonate Sediments and their Diagensis: Developments in Sedimentalogy. 2nd Edication, Elsevier, Amesterdam, 12: 658 p.
Bathurst, R. G. C (1987) Diagenetically enhanced bedding in argillaceous platform limestones: stratified cementation and selective compaction, Sedimentology, 34(5): 749-778.
Brand, U. & Veizer, J (1981) Chemical diagenesis of multicomponent carbonate system, II: stable isotopes: Journal Sedimentary Petrology, 51: 987-997.
Brand, U., Azmy, K., and Veizer, J (2006) Evaluation of the Salinic I tectonic, Cancañiri glacial and Ireviken biotic events: Biochemostratigraphy of the Lower Silurian succession in the Niagara Gorge area, Canada and USA: Palaeogeography, Palaeoclimatology, Palaeoecology. 
 Cooke, M. L., Simo, J. A., underwood, C. A. and Rijken, P (2006) Mechanical Stratigraphic controls on fracturepatterns within carbonates and implications for groundwater flow. Sedimentary Geol, 184: 225-239.
Ehrenberg, S. N., Pickard, N. A. H., Svana and Oxtoby, T. A (2002) Cement geochemistry of photozoan carbonate strata (Upper Carboniferous-Lower Permian), Finnmark Carbonate Platform, Brents Sea. Journal Sedimentary Research, 72: 95-115.
EL – Ghali, M. A. K., Tajoti, K. G., M ansorbeh, H., Ogle, N., & Kalin, R. M (2006) Origin and timing of sidrelite cementation upper Ordivisian glacogenic sandstone from the Murzuk basin, SW Libya. Marine and Petroleum Geology, 23: 459- 471.
El-Saiy, A. K., and Jordan, B. R (2007) Diagenetic aspects of tertiary carbonates west of the Northern Oman Mountains, United Arab Emirates: Journal of Asian Earth Sciences, 3: 35–43.
Fabricius, I. L., & Borre, M (2007) Stylolites, Porosity, depositional texture, and silicates in Chalk facies sediments. Ontony Jave Plateau – Gorm and Tyra fields, North Sea. Sedimentology, 54: 183 – 205.
Fantle, M. S., Barnes, B. D. and Lau, K. V (2020) The role of diagenesis in shaping the geochemistry of the marine carbonate record. Annual Review of Earth and Planetary Sciences, 48: 549-583.
      Flügel, E (2004) Microfacies of Carbonate Rocks: Analysis Interpretation and Application. Springer-Verlag, Berlin, 976p.
Flügel, E (2010) Microfacies of Carbonate Rocks: Analysis Interpretation and Application. Springer-Verlag, Berlin, 976p.
 Folk, R. L., and Siedlecka, A (1974) The Schizohaline environment: its sedimentary and diagenesis fabrics as exemplified by late Paleozoic rocks of Bear Island, Svalbard, Journal of Sedimentary Geology, 11: 1-15.
Folk, R. L (1965) Some aspects of recrystallization in ancient limestones. In: Pray, L.C. and Murray, R.C. (eds.): Dolomitization and limestone diagenesis. Society of Economic Paleontologist and Mineralogists. Spec. Publ., 13: 14-48.
Garcia – pichel, F (2006) Plausible mechanisms for the boring on carbonates by microbial protorophs Sedimentary Geology, 125: 29-50.
Goldhaber, M. B (2004) Sulfur – rich sediment, In: Mackezie F. T., (ED.), Sediments, Diageneiss, and Sedimentary Rocks, Treatise on Geochemistry. Elsevier, Amesterdam, 257 – 288.
Heydari, E., & Wade, W (2003) Massive recrystalization of low – Mg calcite at high tempretures in hedrocarbon source rocks, Implication for organic acids as factors in diagensis. American Assocation of Petrleum Geologists Bulletin, 86: 1285 – 1303.
Higgins, J. A., Blättler, C., Lundstrom, E., Santiago-Ramos, D., Akhtar, A., Ahm, A. C., Bialik, O., Holmden, C., Bradbury, H., and Murray, S (2018) Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments: Geochimica et Cosmochimica Acta, 220: 512-534
Hood, A. V. S., Planavsky, N. J., Wallace, M. W., and Wang, X (2018) The effects of diagenesis on geochemical paleoredox proxies in sedimentary carbonates. Geochimica et Cosmochimica Acta, 232: 265–287. https://doi.org/10.1016/j.gca.2018.04.022 .
Hoseinabadi, M., Mahboubi, A., Shabestari, G. M., and Motamed, A (2016) Depositional environment, diagenesis, and geochemistry of Devonian Bahram formation carbonates, Eastern Iran. Arabian Journal of Geosciences, 9(1): 70. https://doi.org/10.1007/s12517-015- 2056-4.
Hua, G., Yuansheng, D., Lian, Z., Jianghai, Y., Hu, H., Min, L., and Yuan, W (2013) Trace and rare earth elemental geochemistry of carbonate succession in the Middle Gaoyuzhuang Formation, Pingquan Section: implications for Early Mesoproterozoic ocean redox conditions. Journal of Palaeogeography, 2: 209-221.
https://doi.org/10.3724/SP.J.1261.2013.00027.
Jamalian, M., and Adabi, M. H (2014) Geochemistry, microfacies and diagenetic evidences for original aragonite mineralogy and open diagenetic system of Lower Cretaceous carbonates Fahliyan Formation (Kuh-e Siah area, Zagros Basin, South Iran). Carbonates and Evaporites, 30(1): 77–98.
James, G., and Wynd, J (1965) Stratigraphic nomenclature of Iranian oil consortium agreement area: AAPG Bulletin, 49 (12): 2182-2245.
Javanbakht, M., Wanas, H. A., Jafarian, A., Shahsavan, N., and Sahraeyan, M (2018) Carbonate diagenesis in the Barremian-Aptian Tirgan Formation (Kopet-Dagh Basin, NE Iran): Petrographic, geochemical and reservoir quality constraints. Journal of African Earth Sciences, 144: 122–135.
Karbasi, A., Maaghrebi, M., Noori, R., Lak, R., Sadrinasab, M (2020) Investigation of spatiotemporal variation of drought in Iran during the last five decades, Desert, 25 (2): 213-226.
Kasih, G. A. A., Chiba, S., Yamagata, Y., Shimizu, Y., & Haraguchi, K (2008) Modelling early diagensis of sediment in Ago Bay, Japan, A comparison of steady satae and dynamic calculation. Ecological Modelling, 215: 40-54.
Lan, X., Liu, H., Lü, X., Yang, Y., and Dong, L (2020) Geological and geochemical implications of the complicated carbonate diagenetic process in the Lower Ordovician buried hills of the eastern Tazhong Low Rise, NW China, using Well M1 as an example. Carbonates and Evaporites, 35(14): 15
Li, Z., Goldstein, R. H., and Franseen, E. K (2017) Meteoric calcite cementation: diagenetic response to relative fall in sea-level and effect on porosity and permeability, Las Negras area, southeastern Spain. Sedimentary Geology, 348: 1–18
Longman, M. W (1980) Carbonate diagenetic textures from nearsurfacediagenetic environments. AAPG Bull., 64: 461-487.
López-Quirós, A., Barbier, M., Martín, J. M., Puga- Bernabéu, Á. and Guichet, X (2016) Diagenetic evolution of Tortonian temperate carbonates close to evaporites in the Granada Basin (SE Spain). Sedimentary Geology, 335: 180-196.
Madden, R., and Wilson, M (2013) Diagenesis of a SE Asian Cenozoic carbonate platform margin and its adjacent basinal deposits, Sedimentary Geology, 286 (287): 20–38.
Messadi, A. M., Mardassi, B., Ouali, J, A., Touir, J (2018) Diagenetic process as tool to diagnose paleo – environment conditions, bathymetry and oxygenation during Late Paleocene – Early Eocene in the Gafsa Basin. Carbonate and Evaporates, 1-16.
Milliman, J. D (1974) Marine Carbonates. Springerverlag. New York, 375p.
Milliman, J., Mueller, G., and Foerstner, U (1974) Marine carbonates. Recent sedimentary carbonates: Part, 1: 375.
Moradpour, A., Zarei Sahamieh, R., Ahmadi Khalaji, A., Sarikhani, R (2019) Environmental pollution and Pattern formation of the Harsin–Sahneh ophiolitic complex (NE Kermanshah—west of Iran). Indian Journal of Geo Marine Sciences, 48(2): 193-204.
Murris, R. J (1980) Middle East stratigraphic evolution and oil habitat. American Association of Petroleum Geologists Bulletin, 64: 597–618.
Mucci, A (1988) Manganese uptake during calcite precipitation from Seawater: conditions leading to the Formation of a pseudo kutnahorite: Geochimica et Cosmochimica Acta, 52: 1859-1868.
Nicolaides, S., Wallace, M. W (1997) Submarine cementation and sub aerial exposure in Oligo-Miocene temperate carbonates, Torquay Basin, Australia. Journal of Sedimentary Research, 67 (3): 397–410.
Oluwajana, O. A., Ehinola, O. A., Ofiwe, C. U., Akhayere, E., and Egunjobi, K (2020) Depositional environment and diagenesis of Late Cretaceous-Early Paleogene carbonates on the Benin flank, southwestern Nigeria. Journal of African Earth Sciences, 163: 103762.
Omidpour, A., Mahboubi, A., Moussavi-Harami, R., Rahimpour-Bonab, H (2022) Effects of dolomitization on porosity – Permeability distribution in depositional sequences and its effects on reservoir quality, a case from Asmari Formation, SW Iran, Journal of Petroleum Science and Engineering, 109348.
Paganoni, M., Al Harthi, A., Morad, D., Morad, S., Ceriani, A., Mansurbeg, H., Al Suwaidi, A., Al- Aasm, I.S., Ehrenberg, S.N. and Sirat, M (2016) Impact of stylolitization on diagenesis of a Lower Cretaceous carbonate reservoir from a giant oilfield, Abu Dhabi, United Arab Emirates. Sedimentary Geology, 335: 70-92.
Pettijohn, F. J (1975) Sedimentary Rocks. Harper& Row. New York. 628 pp.
Rajabi, P. Moghadam, M. I. and Gharib, F (2011) Microbiostratigraphy and microfacies of Tale- Zang Formation in Lorestan basin. Geosciences, 22(86): 155-160.
Rao, C. P (1990) Geochemical characteristics of cool-temperate carbonates, Tasmania, Australia. Carbonates and Evaporites, 5: 209-221.
Rao, C. P (1991) Geochemical differences between subtropical (Ordovician), temperate (Recentand Pleistocene) subpolar (Permian) carbonates, Tasmania Australia. Carbonates and Evaporites, 6: 83-106.
Rao, C. P (1996) Modern Carbonates: Tropical, Temperate and Polar: Introduction to Sedimentology and Geeochemistry. Carbonates, Hobart (Tasmania), 206 p.
Rao, C. P., and Jayawardane, M. P. J (1994) Major minerals, elemntal and isotopic composition in modern temperate shelf carbonates, Eastern Tasmania, Australia, implications for the occurrence of extensive ancient non-tropical carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology, 107: 49-63.
Rao, C. P., and Adabi, M. H (1992) Carbonate minerals, major elements and oxygen and carbon isotopes and their variation with depth in cool, temperate carbonates, Western Tasmania, Australia: Marine Geology, 103: 249-272.
Rao C. P., and Amini, Z. Z (1995) Faunal relationship to grain-size, mineralogy and geochemistry in recent temperate shelf carbonates, Eastern Tasmania, Australia. Carbonates and Evaporites, 10: 114-123.
Railsback, L. B (1993) Lithologic controls on morphology of pressure-dissolution surfaces (stylolites and dissolution seams) in Paleozoic carbonate rocks from the Mideastern United States. Journal of Sedimentary Research, 63 (3): 513–522.
Rogen, B., & Fabricius, I. L (2002) Influence of clay and silica on permeability and capillary entry pressure of chalk reservoirs in the North sea. Petroleum Geoscience, 8: 287 – 293.
Ronchi, P., Jadoul, F., Ceriani, A., Giulio, A. D., Scotti, P., Ortenzi, A. and Massara, E. P (2011) Multistage dolomitization and distribution of dolomitized bodies in Early Jurassic carbonate platforms (Southern Alps, Italy), Sedimentology, 58: 532–565.
San Miguel, G., Aurell, M. and Bádenas, B (2017) Diagenetic evolution of a shallow marine Kimmeridgian carbonate ramp (Jabaloyas, NE Spain): implications for hydrocarbon reservoir quality. Arabian Journal of Geosciences, 10 (16): 376 p.
Seibel, M. J., & James, N. P (2017) Diagenesis of Miocene, incised Valley – filling limestones: Provence Southern France. Sedimentary Geology, 347: 21 – 35.
Shanmugam, G., and Benedict, G. L (1983) Manganese distribution in the carbonate fraction of shallow to deep marine lithofacies, Middle Ordovician, Eastern Tennessee. Sedimentary Geology, 35: 165-175.
Shi, P., Tang, H., Wang, Z., Sha, X., Wei, H. and Liu, C (2020) Carbonate diagenesis in fourthorder sequences: A case study of yingshan formation (Lower Ordovician) from the yubei area-Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 195: 107756.
Smith, J. V (2000) Three – dimensional morphology and connectivity of Stylolite shape reactivated during veining. Journal of Structural Geology, 22: 59 – 64.
Tucker, M. E. and Wright, V. P (1990) Carbonate Sedimentology: Blackwell, Oxford, 482 p.
Tucker, M. E (2001) Sedimentary Petrology. 3d Edition, Blackwell, Oxford, 260 p.
Van Buchem, F. S. P., Allan, T., Lausen, G. V., Lotfpour, M., Moallemi, A., Monibi, S., Motiei, H., Pickard, N., Tahmasbi, A. R., Vedrenne, V., Vincent, B (2010) Regional stratigraphic architecture and reservoir types of the Oligo-Miocene deposits in the Dezful Embayment (Asmari and Pabdeh Formations) SW Iran, 329. Geology Society, London. Special Publication, 219–263.
Veizer, J (1983a) Chemical diagenesis of carbonates: theory and application of trace element technique, Stable Isotopes in Sedimentary Geology: Society for Sedimentary Geology, 10: 3-100.
Vincent, B., van Buchem, F. S., Bulot, L. G., Immenhauser, A., Caron, M., Baghbani, D., and Huc, A. Y (2010) Carbon-isotope stratigraphy, biostratigraphy and organic matter distribution in the Aptian–Lower Albian successions of southwest Iran (Dariyan and Kazhdumi formations): Geo Arabia Special Publication, 4 (1): 139-197.
Zaid, S. M (2012) Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (lower Miocene), Warda Field, Gulf of Suez, Egypt. J. African Earth Sci, 66: 56- 71.
Ziegler, M (2001) Late Permian to Holocene paleofacies evolution of the Arabian plate and its hydrocarbon implications: Geo Arabia, 6: 445-450.
Zhang, H., Ding, L., Wang, X., Wang, L., Wang, Q. and Xia, G (2006) Carbonate Diagenesis Controlled by Glacioeustatic Sea-Level Changes: A Case Study from the Carboniferous-Permian Boundary Section at Xikou, China. J. China Univ. Geosci, 17: 103- 114.
Zohdi, A., Adabi, M. H. & Ghobishavi, A (2007) Palaeoenviromental reconstruction, sequence stratigraphy and palaeotemperature estimation of the Upper Paleocene to Middle Eocene Tale-Zang Formation in the Zagros Basin, (south-west Iran), 13th Bathurst Meeting of Carbonate Sedimentologists, University of East Anglia, Norwich, UK. 16-18 July, (in English).