برآورد و واکاوی رواناب و انتقال رسوب و تاثیر آن بر سیستم رسوبی رودخانه های الموت و شاهرود (شمال استان قزوین)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه بوعلی‌سینا، همدان

2 سازمان تحقیقات، آموزش و ترویج کشاورزی، پژوهشکده حفاظت خاک و آبخیزداری کشور، تهران

3 گروه زمین‌شناسی، دانشگاه پیام نور قزوین

چکیده

انتقال رسوب از قاره­ها به اقیانوس­ها و دریاها، یکی از مهم­ترین فرآیندهای مرتبط با تثبیت حاشیه رودخانه، تشکیل خاک، چرخه بیوشیمیایی عناصر، تکامل پوسته و بسیاری از فرآیندهای مرتبط  با زمین است. حوضه­ی آبریز رودخانه شاهرود، بخشی از حوضه آبریز دریای خزر است که در شمال استان قزوین واقع شده است؛ سرشاخه­های اصلی این رودخانه، دو رودخانه‌های دایمی الموت­رود و طالقان­رود هستند؛ این حوضه، از نظر ساختار زمین­شناسی جزء زون البرز جنوبی- مرکزی بوده و بیش­تر از واحدهای آتشفشانی ائوسن و سنگ­های آواری میوسن تشکیل شده است. هدف از این پژوهش، برآورد رواناب و رسوب حوضه آبریز مورد مطالعه است. به این منظور، از نتایج آب­سنجی، رسوب­سنجی، دانه سنجی و ترکیب کانی شناسی بار رسوبی در سال آبی 93-1392 استفاده شد. بررسی نوسانات دوره­ای دبی جریان نشان داد که رودخانه شاهرود دارای رژیم غالب سیلابی است. هم­چنین، نتایج نشان داد که مهم­ترین عوامل موثر بر تغییرات دبی جریان و بار رسوبی، ورود شاخه­های فرعی و ویژگی­های سنگ­شناسی حوضه است. این پژوهش برای اولین بار نشان داد که بیش از 99 درصد بار رسوبی رودخانه را بار معلق تشکیل داده و بخش عمده­ی آن در اندازه سیلت است. ترکیب بخش سیلتی و رسی بار معلق نسبتا مشابه (کوارتز، کلسیت، فلدسپات، مسکویت/کائولینیت) است. بار بستر بیش­تر از خرده­سنگ­های ولکانیکی و کربناته تشکیل شده است. فرایند غالب در بالادست رودخانه (الموت) فرسایش و در میان­رود و پایین دست حمل/رسوب­گذاری می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation and analysis of discharge, sediment transport and its effect on sedimentary processes of Alamut and Shahrud rivers (North of Qazvin Province)

نویسندگان [English]

  • E. Pasban 1
  • S. Khodabakhsh 1
  • M.R. Gharibreza 2
  • M Maleki 3
  • B. Rafiei 1
1
2
3
چکیده [English]

Sediment transport from continents to oceans and seas via rivers is one of the most important processes regulating river-bank stabilization, soil formation, biogeochemical cycling of elements, crustal evolution and many other earth-related processes. Shahroud catchment is a part of Caspian Sea great drainage basin, located in North of Qazvin Province; its main tributaries are Alamoutrud and Taleghanrud rivers. As a structural point of view, the study area is part of Southern-Central Alborz structural zone which is mostly composed of Eocene volcanic units and Miocene terrigenous sedimentary rocks. In this research, water and sediment discharges (2013-2014 water year), grain size and mineralogical analysis of the sediment load were studied. Cyclic variation of discharge indicate a flood-dominated river; both water discharge and sediment load are controlled by the river tributaries and lithology of the catchment.  This research shows (for the first time) that suspended load constitutes (mainly silt-size grains, composed of quartz, calcite, feldspar, muscovite/kaolinite) more than 99% of the sediment load. Bed-load materials are mainly volcanic- and carbonate-rock fragments. Erosion is the main process in upstream and transport/sedimentation  is dominant in the river mid and downstream.
 

کلیدواژه‌ها [English]

  • Shahrud
  • Alamut
  • Taleghan
  • flow discharge
  • hydrometry
  • sediment transport
پاسبان، ع.، محبوبی، ا.، محمودی­قرایی، م.ح.، خانه­باد، م.، تقدیسی نیک­بخت، س (1392) بررسی رخساره­های رسوبی و تغییرات ریزشوندگی رسوبات به­طرف پایین­دست حوضه سرغایه ­- سرنیش (جنوب مشهد)، رخساره­های رسوبی، شماره 2، 153-168.
تلوری، ع.ر (1383) اصول مقدماتی مهندسی و ساماندهی رودخانه، پژوهشکده حفاظت خاک و آبخیزداری، چاپ اول، 454 صفحه.
خدابخش، س (1393) عوامل موثر بر روند ریزشوندگی به سوی پایین­دست در رودخانه­ها با بستر گراولی: نمونه­هایی از شمال و باختر ایران، یافته­های نوین زمین­شناسی کاربردی، 16، 98-107.
شفاعی­بجستان، م (1384) هیدرولیک رسوب، انتشارات دانشگاه شهید چمران اهواز، 470ص.
محبوبی، ا.، پاسبان، ع.، محمودی­قرایی، م.ح.، خانه­باد، م.، تقدیسی نیک­بخت، س (1392) کاربرد مدل MPSIAC و GIS در برآورد میزان فرسایش: مثالی از حوضه آبریز سرغایه - سرنیش (جنوب مشهد)، رسوب­شناسی کاربردی، شماره 1، 87-99.
موسوی، م. ح.، سلیمانی، ب.، معتمد، الف (1392) آنالیز رخساره­های سنگی و مدل­های رسوبی حوضه آبریز شاهرود، استان قزوین. فصلنامه زمین، سال هشتم، شماره 28.
موسوی­حرمی، ر (1383) رسوب­شناسی، انتشارات آستان قدس رضوی، چاپ نهم، 475 صفحه.
Adeogun, B.K., Igboro, S.B., Ibrahim, F.B (2011) Estimate of bed load transport in Kubanni Watershed in Northern Nigeria using grain size distribution data, International Journal of Water Resources and Environmen tal Engineering, 3(5),102-108.
Altin,  T (2009) Pleistocene  and  Holocene  fluvial  development of the Ecemis Valley (central  Anatolia,  Turkey),  Quaternary  International, 204, 76-83.
Annells, R.N., Arthurton, R.S, Bazley, R.AB., Davies (1975) Explanatory text of the Qazvin and Rasht Quadrangles Map, 1:250000, Ministry of Industry and mines, Geological Survey of Iran, Geological Quadrangles Nos, E3, E4.
Bastia, F., Equeenuddin., Sk.Md (2016) Spatio-temporal variation of water flow and sediment discharge in the Mahanadi River, India, Global and Planetary Change, 144, 51-66.
Bertoldi, W., Zanoni, L., Tubino, M (2010) Assessment of morphological changes induced by flow and flood pulses in a gravel bed braided river: The Tagliamento River (Italy), Geomorphology, 114, 348-360.
Bidorn, B., Chanyotha, S., Kish, S.A.,  Donoghue, J.F., Bidorn, K., Mamad, R (2015) The effects of Thailand's Great Flood of 2011 on river sediment discharge in the upper Chao Phraya River basin, Thailand, International Journal of Sediment Research, 30, 328-337.
Beylich, A.A., Laute, K (2015) Sediment sources, spatiotemporal variability and rates of fluvial bedload transport in glacier-connected steep mountain valleys in wester Norway (Erdalen and Bødalen drainage basins), Geomorphology, 228, 552-567.
Brown, R.A., Pasternack, G.B (2014) Hydrologic and topographic variability modulate channel change in mountain rivers, Journal of Hydrology, 510, 551-564.
Carver, R.E (1971) Procedures in sedimentary petrology, Wiley Interscience, 653 pp.
Chung, C.H., Chang, F.J (2013) A refined automated grain sizing method for estimating river-bed grain size distribution of digital images, Journal of Hydrology, 486, 224-233.
Folk, R.L (1974) Petrology of sedimentary rocks: Hemphill Publishing Co., Austin, Texas, 182 pp.
Gay, A., Cerdan, O., Delmas, M., Desmet, M (2014) Variability of suspended sediment yields within the Loire river basin (France), Journal of Hydrology, 519, 1225-1237.
Gharibreza, M., Habibi, A., Imamjomeh, A.R.,  Aqeel Ashraf, M (2014) Coastal processes and sedimentary facies in the Zohreh River Delta (Northern Persian Gulf), Catena, 122, 150-158.
Hassanzadeh, H., Faiznia, S., Shafai Bajestan, M., Motamed, A (2011) Estimate of Sediment Transport Rate at Karkheh River in Iran Using Selected Transport Formulas, World Applied Sciences Journal,  13 (2),  376-384.
Jiang, C., Zhangb, L., Tangc, Z (2017) Multi-temporal scale changes of streamflow and sediment discharge in the headwaters of Yellow River and Yangtze River on the Tibetan Plateau, China, Ecological Engineering, 102, 240-254.
Kanhaiya, S., Singh, B.P., Tripathi, M., Sahu, S., Tiwari, V (2016) Lithofacies and particle-size characteristics of late Quaternary floodplain deposits along the middle reaches of the Ganga River, central Ganga plain, India, Geomorphology, doi.org/10.1016/j.geomorph.2016.08.030.
Martin-Vide, J.P., Plana-Casado, A., Sambola, A., Capape, S (2015) Bedload transport in a river confluence, Geomorphology, 250, 15-28.
Miall, A.D (2006) The geology of fluvial deposits: sedimentary facies, basin analysis and petroleum geology: Springer-Verlag, 582 pp.
Ollero, A (2010) Channel changes and floodplain management in the meandering middle Ebro River, Spain, Geomorphology, 117, 247-260.
Rajaguru, S.N., Gupta, A., Kale, V.S., Mishra, Sh. Ganjoo, R.K., Ely, L.L., Enzel, Y., Baker, V.R (1998) Channel form and processes of the flood-dominated Narmada River, India, Earth surface processes and land formsm, 20, 407-421.
Rice, S.P (1999) The nature and controls of downstream fining within sedimentary links. Journal of Sedimentary Research, 69, 32-39.
Rosgen, D.L (2006a) A Watershed Assessment for River Stability and Sediment Supply (WARSSS), Wildland Hydrology Books, Fort Collins, CO, (In press), http://www.epa.gov/warsss/.
Rovira, A., Ibanez, C., Martin-Vide, J.P (2015) Suspended sediment load at the lowermost Ebro River (Catalonia, Spain), Quaternary International, 1-11.
Rowinski, P., Banaszkiewicz, M., Pempkowiak, J., Lewandowski, M., Sarna, M (2014) Fluvial Hydrodynamics, Hydrodynamic and Sediment Transport Phenomena, Springer, 705 pp.
Schumm, S. A (1981)  Evolution and response  of the fluvial system, sedimentologic impli­cations, Society of Economic Paleontologists and Mineralogists, 31, 19-29.
Scorpio, V., Rosskopf, C.M (2016) Channel adjustments in a Mediterranean river over the last 150 years in
the context of anthropic and natural controls, Geomorphology, 275, 90-104.
Selley, R. C (2000) Applied Sedimentology, Academic Press, 523 pp.
Staudt, F., Mullarney, J.C., Pilditch, C.A., Huhn, K (2017) The role of grain-size ratio in the mobility of mixed granular beds, Geomorphology, 278, 314-328.
Sumer, B.M., Chua, L.H.C., Cheng, N.S., Fredsoe, J (2003) Influence of turbulence on bed load sediment transport, Journal  Hydraul Engineering, 129, 585-596.
Van Rijn, L.C (1993) Principles of sediment transport in rivers, estuaries and coastal seas, Aqua Publications, The Netherlands, 1-17.
Vazquez-Tarrio, D., Menendez-Duarte, R (2014) Bedload transport rates for coarse-bed streams in an Atlantic region (Narcea River, NWIberian Peninsula), Geomorphology, 217, 1-14.
Wilcock, P.R., Brendan, T.D (2005) Persistence of armor layers in gravel-bed streams, Geophysical Research Letters, 32, 8L08402.
Wilcock, P., Pitlick, J., Cui, Y (2009) Sediment Transport Primer Estimating Bed-Material Transport in gravel bed river, Rocky Mountain Research Station, 78 pp.