ژئوشیمی انیدریت قاعده‌ای (سازند آسماری) در تاقدیس‌های بنگستان، سفید، آسماری و اناران در حوضه‌ی رسوبی زاگرس، جنوب باختری ایران

نویسندگان

گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه بوعلی‌سینا، همدان

چکیده

انیدریت قاعده­ای واحد تبخیری مهمی در بخش پایینی سازند آسماری (الیگو-میوسن) می­باشد که ویژگی­های ژئوشیمیایی آن تاکنون مورد مطالعه قرار نگرفته است. در این پژوهش برای پی بردن به ویژگی­ها و شرایط ژئوشیمیایی حاکم در زمان ته­نشینی این واحد تبخیری، هفت برش سطحی از چهار تاقدیس بنگستان، سفید، آسماری و اناران در حوضه رسوبی زاگرس انتخاب شد. آنالیز کانی­شناسی (XRD, BSE-EDX) برای 3 نمونه و آنالیز عنصری (ICP-OES) برای 28 نمونه انجام گرفت. نتایج مطالعات پتروگرافی و آنالیز­های کانی­شناسی نشان داد که طی رخنمون یافتن انیدریت و هیدراته شدن آن، ژیپس ثانویه با ساخت و بافت غالب آلاباستر تشکیل شده است. برای انجام آنالیز ژئوشیمی، به صورت انتخابی چهار برش (بوالفارس، پوتو، گل ترش و اناران) انتخاب گردید. آنالیز عنصری نشان می­دهد که کلسیم و گوگرد مهم­ترین عنصر موجود می­باشند که به صورت کانی ژیپس مشاهده می­شوند. برش بوالفارس بیش­ترین مقدار عناصر استرانسیم، منیزیم و سدیم و کم­ترین مقدار عنصر آهن را دارا می­باشد که بیانگر تاثیر فرآیندهای دیاژنزی و زیستی و نیز محیط کم عمق می­باشد. به سمت برش گل ترش (شمال حوضه) مقدار عناصر استرانسیم، منیزیم و سدیم کاهش و مقدار آهن افزایش می­یابد که مشخص کننده­ی عمق نسبتاً بیش­تر در مناطق شمالی است. برش­های پوتو و اناران بیش­تر تحت تاثیر شرایط هیدرولوژیکی در منطقه بوده و روند تغییرات عنصری متغیری را نشان می­دهند. میزان عنصر لیتیم در برش­های مورد مطالعه کم بوده که حاکی از تبخیر بیش از حد در منطقه می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Geochemistry of the Basal Anhydrite (Asmari Formation) in the Bangestan, Safid, Asmari and Anaran anticlines at the Zagros sedimentary basin, SW Iran

نویسندگان [English]

  • B. Rafiei
  • S. Rahmani
چکیده [English]

Basal Anhydrite is the main evaporite unit presents at the lowermost part of the Asmari Formation (Oligo-Miocene) which its geochemical characteristics have not been studied yet. In this study, seven outcrops, including Bangestan, Safid, Asmari and Anaran anticlines from the Zagros sedimentary basin were selected and their geochemical characteristics and depositional conditions were determined. The mineralogical (XRD, BSE-EDX) and elemental analysis (ICP-OES) were performed. The petrography and mineralogy studies show that the secondary gypsum with alabastrine texture was produced by hydration of anhydrite during exhumation. In order to perform geochemical analysis, four outcrops (Bulfares, Putu, Geletorsh and Anaran) were selected. Based on elemental analysis, calcium and sulphur are the most important elements that found as gypsum. The highest amounts of elements strontium, magnesium and sodium and the lowest amount of iron were found in the Bulfares section, which indicates the effects of diagenetic and biological processes and shallow depositional environment. The amounts of strontium, magnesium and sodium elements decrease and the amount of iron increases toward Geletorsh section (north part of the basin), which indicates deepening of the basin in this area. Putu and Anaran sections show variable elemental changes that demonstrate the area is mostly affected by hydrological conditions. The concentration of lithium is low in the studied sections, which can be attributed to excess evaporation.

کلیدواژه‌ها [English]

  • Asmari Formation
  • Basal Anhydrite
  • Geochemistry
  • Zagros

بهرامی، ف. موسوی­حرمی، ر. خانه­باد، م. محمودی­قرائی، م. ح. صادقی، ر (1393) رخساره­های محیط رسوبی و عملکرد فرآیندهای دیاژنزی مؤثر بر کیفیت مخزنی سازند آسماری در میدان نفتی رامین. رسوب­شناسی کاربردی. جلد 4. ص 36-16.

رحمانی، س (1396) محیط رسوبی و نحوه­ی تشکیل انیدریت قاعده­ای (سازند آسماری) در رخنمون­های شمال فروافتادگی دزفول، جنوب­غرب ایران. پایان­نامه­ی دکترا. دانشگاه بوعلی­سینا همدان.

صیرفیان، ع. ارزانی، ن. طاهری، ع. وزیری­مقدم، ح. هاشمی، م (1386) گزارش نهایی پروژه پژوهشی و تحقیقاتی رخساره­شناسی سازند آسماری در بلندی­های غرب-شمال غرب زاگرس (دهلران-خرم­آباد-چنگوله). شرکت ملی نفت ایران. مدیریت پژوهش و فناوری. قرارداد شماره: 85008-81. چهار جلد.

مطیعی، ه (1374) زمین­شناسی ایران: زمین­شناسی نفت زاگرس جلد 1 و 2. انتشارات سازمان زمین­شناسی و اکتشافات معدنی کشور. 1010ص.

Adabi, M. H (1996) Sedimentology and geochemistry of Upper Jurassic (Iran) and Precambrian (Tasmania) carbonates. Unpubl. Ph.D. Thesis, Uni. Tasmania, Australia, 400 pp.

Aref, M. A. M (1998) Biogenic carbonates – are they a criterion for underlying hydrocarbon accumulations-an example from the Gulf of Suez region. AAPG Bulletin, 82: 336–352.

Babel, M., Schreiber, B. C (2014) Geochemistry of evaporites and evolution of seawater. Treatise on geochemistry, pp.483-560.

Boggs, S (2009) Petrology of sedimentary rocks. Cambridge University Press. 660 pp.

Brantley, S. L., Crerear, D. A., Møller, N. E., Weare, J. H (1984) Geochemistry of a modern marine evaporite: Bocana de Virrila´, Peru. Journal of Sedimentary Petrology, 54:447–462.

Carver, R. E (1971) Procedures in Sedimentary Petrology. New York, Wiley, 653 pp.

Dronkert, H (1985) Evaporite models and sedimentology of Messinian and recent evaporates. GUA Pap. Geol., Ser. 1 (24), pp.1-283.

Ehrenberg, S. N., Pickard, N. A. H., Laursen, G. V., Monibi, S., Mossadegh, Z. K., Svånå, T. A., Aqrawi, A. A. M., McArthur, J. M., Thirlwall, M. F (2007) Strontium isotope stratigraphy of the Asmari Formation (Oligocene-Lower Miocene), SW Iran. Journal of Petroleum Geology, 30 (2): 107-128.

Falcon, N. L (1974) Southern Iran: Zagros Mountains, in A. Spencer, ed., Mesozoic-Cenozoic Orogenic Belts. Geological Society of London Special Publication, 41: 199-211.

Farzipour-Saein, A., Yassaghi, A., Sherkati, S., Koyi, H (2009) Basin evolution of the Lurestan region in the Zagros fold-and-thrust belt, Iran. Journal of Petroleum Geology, 32: 5-19.

Geisler-Cussey, D (1985) Aproche sedimentologiqu et geochimique des mecanismes generateurs des formations evaporite actuelles et fossils. Ph.D. Thesi, University Nancy I. 

Hardie, L. A (1984) Evaporites: marine or non-marine. American Journal of Science, 284: 193–240.

Heydari, E., Hassanzadeh, J., Wade, W. J., Ghazi, A. M (2003) Permian-Triassic boundary interval in the Abadeh section of Iran with implications for mass extiontion. Part 1. Sedimentology: Palaeogeography, Palaeoclimatology, Palaeoecology, 193: 405-423.

Jaworska, J (2012) Crystallization, alternation and recrystallization of sulphates. In Advances in Crystallization Processes. InTech. pp. 465-490.

Kah, L. C., Lyons, T. W., Chesley, J. T (2001) Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands. Implications for Mesoproterozoic marine evolution. Precambrian Research, 111(1): 203-234.

Kasprzyk, A (1994) Distribution of strontium in the Badenian (Middle Miocene) gypsum deposits of the Nida area, southern Poland. Geological Quarterly, 38 (3): 497-512.

Kasprzyk, A (2003) Sedimentological and diagenetic patterns ofanhydrite deposits in the Badenian evaporite basin of the Carpathian Foredeep, southern Poland. Sediment. Geol, 158:167–194.

Kavoosi, M. A., Sherkati Sh (2012) Kalhur Member evaporates and tectonosedimentary evolution of the Zagros fold-thrust belt during Early Miocene in south westernmost of Iran. Carbonates Evaporites, 21: 55-69.

Kushnir, J (1980) The co-precipitation of strontium, magnesium, sodium, potassium, and chloride ions with gypsum: an experimentalstudy. Geochimica et Cosmochimica Acta, 44: 1471–1482.

Kushnir, J (1981) Formation and early diagenesis of varved evaporite sediments in a coastal hypersaline pool. Journal of Sedimentary Research, 51: 1193-1203.

Lu, F. H., Meyers, W. J., Schoonen, M. A (1997) Minor and trace element analyses on gypsum: an experimental study. Chemical geology, 142(1-2): 1-10.

Lyons, W. B., Long, D. T., Hines, M. E., Gaudette, H. E., Armstrong, P.B (1984) Calcification of cyanobacterial mats in SolarLake, Sinai. Geology, 12: 623–626.

Matano, F., Barbieri, M., Di Nocera, S., Torre, M (2005) Stratigraphy and strontium geochemistry of Messinian evaporite-bearing successions of the southern Apennines foredeep, Italy. Implications for the Mediterranean “salinity crisis” and regional palaeogeography. Palaeogeography,Palaeoclimatology, Palaeoecology, 217 (1): 87-114.

Neuendorf, K. K. E., Mehl, J. P., Jackson, J. A (2005) Glossary of Geology,Alexandria, VA: American Geological Institute. 5 edn. pp.1-779.

Ortí -Cabo, F., Pueyo Mur, J. J., Geisler-Cussey, D., Dulau, N (1984) Evaporitic sedimentation in the coastal salinas of Santa Pola (Alicante, Spain). Revista d’Investigacions Geologiques, 38 (39): 169-220.

Playà, E., Ortí, F., Rosell, L (2000) Marine to non-marine sedimentation in the upper Miocene evaporites of the Eastern Betics, SE Spain. Sedimentological and geochemical evidence. Sedimentary Geology, 133 (1): 135-166.

Playà, E., Rosell, L (2005) The celestite problem in gypsum Sr geochemistry: an evaluation of purifying methods of gypsiferous samples. Chemical geology, 221(1): 102-116.

Rafiei, B. Rahmani, S (2017) Textural pattern of secondary gypsum in the Basal Anhydrite of the Asmari Formation, SW Iran. Geopersia, 7(2): 267-278.

Rosell, L., Ortí, F., Kasprzyk, A., Playa, E., Peryt, T. M (1998) Strontium geochemistry of Miocene primary gypsum: Messinian of southeastern Spain and Sicily and Badenian of Poland. Journal of Sedimentary Research, 68 (1): 63-79.

Sonnenfeld, P (1984) Brines and evaporates. Academic Press, London, 613 pp.

Taberner, C., Marshall, J. D., Hendry, J. P., Pierre, C., Thirlwall, M. F (2002) Celestite formation, bacterial sulphate reduction and carbonate cementation of Eocene reefs and basinal sediments (Igualada, NE Spain). Sedimentology, 49 (1): 171-190.

Taher, H., Al-Zuhair, S., Al-Marzouqi, A. H., Haik, Y., Farid, M (2014) Effective extraction of microalgae lipids from wet biomass for biodiesel production. Biomass and bioenergy, 66: 159-167.

Tardy, Y., Krempp, G., Trauth, N (1972) Le lithium dans les mine'rauxargileux des sediments et des sols. Geochimica et Cosmochimica Acta, 36: 397-412.

Tekin, E (2001) Stratigraphy, geochemistry and depositional environment of the celestine-bearing gypsiferous formations of the Tertiary Ulaş-Sivas Basin, East-Central Anatolia (Turkey). Turkish Journal of Earth Sciences, 10 (1): 35-49.

Testa, G., Lugli, S (2000) Gypsum-anhydrite transformation in Messinian evaporates of central Tuscany (Italy). Sedimentary Geology, 130: 249-268.

Twenhofel, W. H (1950) Principles of sedimentation. New York: McGraw-Hill. 2nd edn, pp. 1-673.

Usdowski, E (1973) Das geochemische Verhalten des Strontiums bei der Genese und Diagenese von Ca-karbonat-und Ca-sulfat-Mineralen. Contributions to Mineralogy and Petrology, 38 (3): 177-195.

Van Buchem, F. S. P., Allan, T. L., Laursen, G. V., Lotfpour, M., Moallemi, A., Monibi, S., Motiei, H., Pickard, N. A. H., Tahmasbi, A. R., Vedrenne, V., Vincent, B (2010) Regional stratigraphic architecture and reservoir types of the Oligo-Miocene deposits in the Dezful Embayment (Asmari and Pabdeh Formations), SW Iran. Geological Society, London, special publications, 329: 219-263.