سنگ نگاری، زمین شیمی و تاریخچه دیاژنتیکی بخش دولومیتی سفیدار (تریاس بالایی) در منطقه فارس، جنوب ایران

نویسنده

گروه زمین شناسی، دانشگاه پیام نور

چکیده

بخش دولومیتی سفیدار یکی از واحدهای سنگ­چینه­ای تریاس (نورین) حوضه زاگرس است که در نواحی محدودی از جنوب ایران رخنمون دارد. این بخش شامل دولومیت­های متوسط تا ستبر لایه قهوه­ای رنگ است که به صورت یک لایه راهنما در انتهای توالی رسوبی سازندهای خانه­کت (کربنات­های زاگرس بلند) و دشتک (رخساره کربناته­-­تبخیری زاگرس چین­خورده) حـضور دارد. در ایـن تـحقیق کانی­شناسی، زمین­شیمی و تاریخچه تغییرات دیاژنتیکی رخنمون­های دولومیت سفیدار منطقه فارس در تاقدیس خانه­کت به ستبرای حدود 20 متر و کوه سورمه به ستبرای 30 متر مورد مطالعه و مقایسه قرار گرفته است. داده­های حاصل از بررسی مقاطع نازک، مقادیر عناصر مختلف و ایزوتوپ­های پایدار اکسیژن و کربن از پیچیدگی مراحل تشکیل این واحد دولومیتی حکایت می­کنند که از سه نوع دولومیت میکروکریستالین، متوسط بلور و زین­اسبی تشکیل شده است. در مرحله نخست، دولومیت­های ریز بلور در سبخای یک پلاتفرم اپی­ریک متأثر از تبخیر و تغلیظ شورابه­ها، در دمای نزدیک به سطح زمین (25 تا 35 درجه سانتی­گراد) به وجود آمدند. افزایش اندازه و استوکیومتری و تغییرات ژئوشیمی در دولومیت­های متوسط و درشت بلور گویای نقش فرایندهای دیاژنتیکی مرتبط با دفن از جمله تجدید تبلور در تشکیل آن­ها است. دولومیت­های اخیر محصول تغییرات دیاژنتیکی در اعماق 1 تا 3 کیلومتری درون زمین و در دمای 54 تا 108 درجه سانتی­گراد هستند. تفاوت قابل­توجه مقادیر بعضی عناصر فرعی دولومیت سفیدار از جمله کاهش آهن و منگنز و افزایش استرانسیم در نمونه­های بُرش خانه­کت می­تواند به جهت جریان سیالات دولومیت­ساز به سمت شمال منطقه مربوط باشد. گسل­های عمده منطقه از جمله پیشانی کوهستان و زاگرس بلند ضمن کنترل هندسه حوضه رسوبی، نقش اساسی در تعیین جهت جریان و مسیر انتقال سیالات دولومیت­ساز داشته­اند. با وجود تفاوت قابل­توجه رخساره­ها و توالی رسوبی تریاس در زیرپهنه­های مختلف زاگرس، دولومیت سفیدار با رخساره سنگی مشابه و گسترش جغرافیایی زیاد در این مناطق تا خلیج فارس و شمال عربستان شناخته شده است. این موضوع حاکی از تغییرات مهمی در زمین­شناسی فلات قاره جنوب اقیانوس نئوتتیس، به خصوص پیوستگی حوضه و حاکم شدن شرایط رسوبی یکسان در مناطق دو سوی گسل زاگرس بلند در اواسط تریاس پسین است.

کلیدواژه‌ها


عنوان مقاله [English]

Petrography, geochemistry and diagenetic history of the Sefidar Dolomite Member (Upper Trias) in Fars region, south Iran

نویسنده [English]

  • A. H. Jalilian
چکیده [English]

crops out in a few areas in southern Iran. This member consists of medium to thick-bedded, dark brown colored dolomites which form a distinct, feature-forming horizon on the top of the Khaneh Kat Formation (High Zagros carbonates) and Dashtak Formation (evaporite-carbonate facies of the folded Zagros). This paper is a study of the mineralogy, geochemistry and diagenetic history of the SDM outcrops in Kuh-e-Surmeh and Khaneh Kat anticlines in Fars region with a thickness of 30 and 20m respectively. Petrographic features and geochemical evidences of the studied sections indicated that the SDM dolomites were subjected to a complex diagenetic history, resulting to three different dolomite-rock textures including microcrystalline, medium-crystalline and baroque. In the first stage, microcrystalline dolomites were formed in the tidal zone (especially Sabkha) of an eperic platfom affected by evaporation and condensation of brines under normal temperature (25-35°C), near surface conditions. Increasing the size and stoichiometry and changes in geochemistry of moderate and coarse-crystalline dolomites suggest the role of diagenetic processes associated with burial, including recrystallization in shallow to deep-subsurface environments. These dolomites are the products of changes in a diagenetic system at a depth of 1 to 3 kilometers inside the earth and at temperatures of 54 to 108°C. Comparison of the changes in the amounts of some minor elements of the SDM including reduction of iron and manganese, and the increase of strontium in samples of Khaneh Kat section indicated the flow of dolomitization fluids from south to north. The major faults of the region such as Mountain Front Fault and High Zagros Fault (HZF) while controlling the geometry of the sedimentary basin, have played a major role in determining the direction of flow and the pathway of the transfer of dolomitization fluids. Despite the significant difference between the facies and the Triassic sedimentary sequences in different sub-areas of Zagros, the SDM has a wide areal extent and can be traced to Lurestan and across the Persian Gulf into Saudi Arabia with similar rock facies. This subject suggests significant changes in the geology of the southern continental shelf of the Neothetys Ocean, especially in the continuity of the basin and stablishing of the same sedimentary conditions in the areas in both sides of the HZF in the middle of the Late Triassic.

کلیدواژه‌ها [English]

  • Sefidar Dolomite
  • Triassic of Zagros
  • petrology
  • Geochemistry
  • Diagenesis
آدابی، م. ح (1383) ژئوشیمی رسوبی. انتشارات آرین زمین، 448 صفحه.
ارزانی، ن (1391) ژئوشیمی رسوبی. انتشارات دانشگاه پیام نور، 304 صفحه.
آقانباتی، ع (1392) زمین­شناسی ایران و کشورهای همجوار. انتشارات سازمان زمین­شناسی و اکتشافات معدنی کشور، 710 صفحه.
جلیلیان، ع. ح (1395) نهشته­های پیراکشندی و توفانی در بُرش الگوی سازند خانه­کت، تریاس زاگرس بلند، خاور شیراز. مجله رسوب­شناسی کاربردی دانشگاه بوعلی­سینا همدان، دوره 4، شماره 7، صفحات 31-18.
شهرابی، م. (1378) تریاس در ایران. سازمان زمین­شناسی و اکتشافات معدنی کشور، 279 صفحه.
Adabi, M. H (2009) Multistage dolomitization of Upper Jurassic Mozduran Formation Kopet-Dagh Basin, N.E. Iran. Carbonates and Evaporites, 24(1): 16-32.
Adam, J. and Al-Aasm, I. S (2017) Petrologic and geochemical attributes of calcite cementation, dolomitization and dolomite recrystallization: an example from the Mississippian Pekisko Formation, west-central Alberta. Bulletin of Canadian Petroleum Geology, 65: 235–261.
Alavi, M (2007) Structures of the Zagros fold-thrust belt in Iran. American Journal of Science, 307: 1064-1095.
Allan, J. R. and Wiggins, W. D (1993) Dolomite Reservoirs: Geochemical Techniques for Evaluating Origin and Distribution. American Association of Petroleum Geologists, Continuing Education Course Notes, 129 p.
Azmy, K., Lavoie, D., Knight, I. and Chi, G (2008) Dolomitization of the Aguathuna Formation carbonates of Port au Port Peninsula in western Newfoundland, Canada: implications for a hydrocarbon reservoir. Canadian Journal of Earth Sciences, 45: 795-813.
Berberian, M (1995) Master "blind" thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics, 241: 193-224.
Blendinger, W., Lohmeier, S., Bertini, A., Meibner, E. and Sattler, C. D (2015) A new model for the formation of dolomite in the Triassic dolomites, northern Italy. Journal of Petroleum Geology, 38 (1): 5-36.
Boggs, S (2009) Petrology of Sedimentary Rocks. Cambridge University Press, 600 p.
Braithwite, C. J. R., Rizzi, G. and Darke, G (2004) The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geological Society of London, Special Publication No. 235, 413 p.
Buelter, D. P. and Guillemette, R. N. (1988) Geochemistry of epigenetic dolomite associated with lead-zinc mineralization of the Viburnum Trend, southeast Missouri: a reconnaissance study. In Shukla, V. and Baker, P. A. (Eds) Sedimentology and Geochemistry of Dolostones. Society of Economic Paleontologists and Mineralogists, Special Publication, 43: 97-113.
Crasquin-Soleau, S. and Khosrow Tehrani, K (1995) First discovery of Triassic Ostracodes in the Khanek Kat Formation, Michparvar Mountain (western Iran). Revue de micropaleontology, 38 (1): 27-36.
Dickson, J. A. D (1965) Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Petrology, No. 36, p. 505.
Drits, V. A., McCarty, D. K., Sakharov, B. and Milliken, K. L. (2005) New insight into structural and compositional variability in some ancient excess-Ca dolomite. The Canadian Mineralogist, 43: 1255-1290
Flugel, E (2010) Microfacies of carbonate rocks. Springer, 984 p.
Folk, R. L (1980) Petrology of Sedimentary Rocks. Hemphill Publishing Company, 182 p.
Folk, R. L. and Land, L. S (1975) Mg/Ca Ratio and Salinity: Two Controls over Crystallization of Dolomite. American Association of Petroleum GeologistsBulletin, 59: 60-68.
Frisia, S (1994) Mechanisms of complete dolomitization in a carbonate shelf: comparison between the Norian Dolomia Principale (Italy) and the Holocene of Abu Dhabi Sabkha. In: Purser, B., Tucker, M. and Zenger, D (Eds) Dolomites: A Volume in Honour of Dolomieu. Blackwell Scientific Publications No. 21, p. 55-74.
Ghazban, F (2007) Petroleum geology of the Persian Gulf. Tehran University Press, 707 p.
Gregg, J. M. and Shelton, K. L (1990) Dolomitization and dolomite neomorphism in the back reef facies of the Bonneterre and Davis formations (Cambrian), Southeastern Missouri. Journal of Sedimentary Petrology, 60 (4): 549-562.
Green, D. G (2005) Fault and conduit controlled burial dolomitization of the Devonian west-central Alberta Deep Basin. Bulletin of Canadian Petroleum Geologists, 53: 101–129.
Haas, J., Lobitzer, H. and Monostori, M (2007) Characteristics of the Lofer cyclicity in the type locality of the Dachstein Limestone (Dachstein Plateau, Austria). Facies, 53: 113–126.
Haas, J., Lukoczki, G., Budai, T. and Demeny, A (2015) Genesis of Upper Triassic peritidal dolomites in the Transdanubian Range, Hungary. Facies, 61 (8): 1-28.
Hardie, L. A (1996) Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporates over the past 600 m.y. Geology, 24: 279–283.
Heydari, E (1997) Hydrotectonic models of burial diagenesis in platform carbonates based on formation water geochemistry in North American sedimentary basins. In: Montanez, I. P., Gregg, J. M. and Shelton, K. L (Eds) Basin-Wide Diagenetic Patterns: Integrated Petrologic, Geochemical and Hydrologic Considerations. The Society of Economic Paleontologists and Mineralogists, 57: 53–79.
Iannace, A., Capuano, M. and Galluccio, L (2011) Dolomites and dolomites in Mesozoic platform carbonates of the Southern Apennines: Geometric distribution, petrography and geochemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 310: 324–339.
Iannace, A. and Frisia, S (1994) Changing dolomitization styles from Norian to Rhaetian in southern Tethys realm. In: Purser, B., Tucker, M. and and Zenger, D (Eds) Dolomites: A Volume in Honour of Dolomieu. Blackwell Scientific Publications No. 21, p. 75–89.
Jahani, S., Callot, J. P., Lamotte, P., Letouzey, J. and Leturmy, P (2007) The Salt Diapirs of the Eastern Fars Province (Zagros, Iran): A Brief Outline of their Past and Present. In: Lacombe, O., Lave, J., Roure, F. and Verges, F (Eds) Thrust Belts and Foreland Basins, p. 289–308.
James, N. P. and Jones, B (2015). Origin of Carbonate Sedimentary Rocks. John Wiley & Sons, 464 p.
James, N. P. and Kendall, A. C (1992) Introduction to Carbonate and Evaporite Facies Models. In: Walker, R. G. and James, N. P., (Eds) Facies models response to sea level change. Geological Association of Canada, p. 265-275.
Kaczmarek, S. E. and Sibley, D. F (2014) Direct physical evidence of dolomite recrystallization. Sedimentology, 61: 1862–1882.
Korte, Ch., Kozur, H. W. and Veizer, J (2005) δ13C and δ18O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature. Palaeogeogry Palaeoclimatoly Palaeoecology, 226: 287–306
Kretz, R (1992) Carousel model for the crystallization of saddle dolomite. Journal of Sedimentary Petrology, 62: 190–195.
Land, L. S (1985) The Origin of Massive Dolomite. Journal of Geological Education, 33: 112-125.
Lohmann, K. C. and Walker, J. C. G (1989) The 8180 record of Phanerozoic abiotic marine calcite cements: Geophysical Research Letters, 16: 319-322.
Lonnee, J. and Machel, H. G. (2006) Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field, middle Devonian Slave Point Formation, British Columbia, Canada. AAPG Bull. 90 (11): 1739-1761.
Machel, H. G. (2004) Concepts and models of dolomitization: a critical reappraisal. In: Braithwite, C. J. R., Rizzi, G. and Darke, G. (Eds) The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geological Society of London, Special Publication No. 235, p. 7-64.
Mazzullo, S. J (1992) Geochemical and neomorphic alteration of dolomite: a review. Carbonates and Evaporites, 7: 21-37.
McManus, A. and Wallace, M. W (1992) Age of Mississippi Valley type sulfides determined using cathodoluminesence cement stratigraphy, Lennard Shelf, Canning Basin, Western Australia. Economic Geology, 87: 189–193.
Meister, P., McKenzie, J. A., Bernasconi, S. M. and Brack, P (2013) Dolomite formation in the shallow seas of the Alpine Triassic. Sedimentology, 60: 270–291
Morrow, D. W (1990) Dolomite-Part 1: The chemistry of dolomitization and dolomite precipitation. In: McIlreath, I. A and Morrow, D. W (Eds) Diagenesis. Geoscience Canada Reprint Series No. 4, p. 113-124.
Morse, J. W. and Mackenzie, F. T (1990) Geochemistry of Sedimentary Carbonates. Elsevier, Developments in Sedimentology 48, 707 p.
Mouthereau, F., Lacombe, O. and Meyer, B (2006) The Zagros folded belt (Fars, Iran): constraints from topography and critical wedge modeling. Geophysial Journal International, 165: 336–356.
Nasir, S., Al-Saad, H., Alsayigh, A. and Weidlich, O (2008) Geology and petrology of the Hormuz dolomite, Infra-Cambrian: Implications for the formation of the salt-cored Halul and Shraouh islands, Offshore, State of Qatar. Journal of Asian Earth Sciences, 33: 353–365.
Pokrovsky, O. S (2017) Dolomite: Formation, Characteristics and Environmental Impact. Nova Science Publication Inc, 190 p.
Purser, B., Tucker, M. and Zenger, D (1994) Dolomites: A Volume in Honour of Dolomieu. Blackwell Scientific Publications No. 21, 451 p.
Rahimpour-Bonab, H., Esrafili-Dizaji, B. and Tavakoli, V (2010) Dolomitization and Anhydrite Precipitation in Permo‐Triassic Carbonates at the South Pars Gasfield, Offshore Iran: Controls on Reservoir Quality. Journal of Petroleum Geology, 33(2): 1-24.
Raskazov, S. V., Sergei, B., Brandt, S. B. and Brandt, S. I (2010) Radiogenic isotopes in geologic processes. Springer, 305 p.
Ren, M. and Jones, B (2017) Spatial variations in the stoichiometry and geochemistry of Miocene dolomite from Grand Cayman: Implications for the origin of island dolostone. Sedimentary Geology, 348: 69–93.
Ridgwell, A (2005) A Mid Mesozoic Revolution in the regulation of ocean chemistry. Marine Geology, 217: 339–357.
Ronchi, P., Di Giulio, A., Ceriani, A. and Scotti, P (2010) Contrasting fluid events giving rise to apparently similar diagenetic products; late-stage dolomite cements from the Southern Alps and central Apennines, Italy. In: Van Buchem, F. S. P., Gerdes, K. D. and Esteban, M (eds) Mesozoic and Cenozoic Carbonate Systems of the Mediterranean and the Middle East: Stratigraphic and Diagenetic Reference Models. Geological Society, London, Special Publications, 329: 397–413.
Sandberg, P. A (1983) An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. Nature, 305: 19–22.
Searl, A (1989) Saddle dolomite: a new view of its nature and origin. Mineralogical Magazine, 53: 547-555.
Sepkoski Jr., J. J., Bambach, R. K. and Droser, M. L (1991) Secular changes in Phaneozoic event bedding and the biological overprint. In: Einsele, G., Ricken, W., Seilacher, A., (Eds) Cycles and Events in Stratigraphy. Springer, p. 298–312.
Setudehnia, A (1978) The Mesozoic sequence in southwest Iran and adjacent area. Journal of Petroleum Geology, 1(1): 3-42.
Seyed-Emami, K (2003) Triassic in Iran. Fcies, 48: 91-106.
Seyrafian, Vaziri-Moghaddam, H., Arzani, N. and Taheri, A (2011) Facies analysis of the Asmari Formation in central and north-central Zagros basin, southwest Iran: Biostratigraphy, paleoecology and diagenesis. Revista Mexicana de Ciencias Geológicas, 28: 439-458.
Sharland, P. R., Archer, R., Casey, D. M., Davies, R. B., Hall, S. H., Heward, H. P., Horbory, A. D. and Simons, M. D (2001) Arabian plate sequence stratigraphy. GeoArabia, Gulf Petrolink, Bahrain, 370 p.
Sherkati, S., Letouzey, J. and Frizon de Lamotte, D (2006) Central Zagros fold-thrust belt (Iran): New insights from seismic data, field observation, and sandbox modeling. Tectonics, 25: 1-27.
Shinn, E. A (1983) Tidal Flat Environment. In: Scholle, P. A., Bebout, D. G. and Moore, C. H., (Eds) Carbonate depositional environments. AAPG Memoir, 33: 171-210.
Sibley, D. F. (1991) Secular changes in the amount and texture of dolomite: Geology, 19: 151-154.
Sibley, D. F. and Gregg, J. M (1987) Classificatin of dolomite rock texture. Journal of Sedimentary Petrology, 57: 967-975.
Sperber, C. M., Wilkinson, B. H., Peacor, D. R (1994) Rock composition, dolomite stoichiometry and rock/water reactions in dolomitic carbonate rocks. Journal of Geolgy, 92: 609–692.
Spötl, C. and Burns, S. J (1991) Formation of 180-depleted dolomite within a marine evaporitic sequence, Triassic Reichenhall Formation, Austria. Sedimentology, 38: 1041-1057.
Spötl, C. and Pitman, J. K (2009) Saddle (Baroque) Dolomite in Carbonates and Sandstones: A Reappraisal of a Burial-Diagenetic Concept. In: Morad, S (Ed) Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution. International Association of Sedimentologists, Special Publication No. 26, p. 437-460.
Swart, P. K., Cantrell, D. L., Westphal, H., Handford, C.R. and Kendall, C. G (2005) Origin of dolomite in the Arab-D reservoir from the Ghawar Field, Saudi Arabia: evidence from petrographic and geochemical constraints. J Sediment Res, 75: 476–491.
Szabo, F., and Kheradpir, A (1978) Permian and Triassic stratigraphy, Zagros basin, south-west Iran. Journal of Petroleum Geology, 1(2): 57-82.
Talbot, A. and Alavi, M. (1996) The past of future syntaxis across the Zagros. Geological Society of London, Special Publication No. 100, p. 89-109.
Torok, A (2000) Formation of dolomite mottling in Middle Triassic ramp carbonates (Southern Hungary). Sedimentary Geology, 131: 131–145.
Tucker, M. E. and Wright, V. P (1990) Carbonate Sedimentology. Blackwell, 482 p.
Usdowski, E (1994) Synthesis of dolomite and geochemical implications. In: Purser, B., Tucker, M. and Zenger, D (Eds) Dolomites: A Volume in Honour of Dolomieu. International Association of Sedimentologists, Special Publication No. 21, p. 345-360.
Vahrenkamp, V. C. and Swart, P. K (1990) Newdistribution coefficient for the incorporation of strontium into dolomites and its implication for the formation of ancient dolomites. Geology, 18: 387-391.
Veizer, J (1983) Chemical diagenesis of carbonates: theory and application of trace element technique. In: Arthur, M. A (Ed) Stable isotopes in sedimentary geology. The Society of Economic Paleontologists and Mineralogists, Short Course Notes, 10: 3-100.
Warren, J. K (2000) Dolomite: occurrence, evolution and economically important associations. Earth-Science Reviews, 52: 1–81.
Warren, J. K (2006) Evaporites: Sediments, Resources and Hydrocarbons. Springer, 1035 p.
Wierzbicki, R., Dravis, J. J., Al-Aasm, I. and Harland, N (2006) Burial dolomitization and dissolution of Upper Jurassic Abenaki platform carbonates, Deep Panuke reservoir, Nova Scotia, Canada. American Association of Petroleum Geologists, 90(11): 1843–1861.
Winkelstern, I. Z. and Lohmann, K. C (2017) Shallow burial alteration of dolomite and limestone clumped isotope Geochemistry. Geology, 44(6): 467–470.
Wright, V. P (1984) Peritidal carbonate facies models: a review. Geological Journal, 19:  309–325.
Wright, D. T. and Wacey, D. (2004) Sedimentary dolomite: a reality check. In: Braithwite, C. J. R., Rizzi, G. and Darke, G (Eds) The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geological Society of London, Special Publication No. 235, p. 65-74.
Zanchi, A., Zanchetta, S., Berra, F., Mattei, M., Garzanti, E., Molyneox, S., Nawab, A. and Sabouri, J (2009) The Eo-Cimmerian (Late? Triassic) orogeny in North Iran. In: Brunet, M. F., Wilmsen, M. and Granath, J. W (Eds) South Caspian to Central Iran Basins. Geological Society of London, Special Publication No. 312, p. 31–55.
Ziegler, M. A (2001) Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia, 6: 445–504.