پراکندگی اجزای رسوبی و بررسی کانی شناختی در بخش شمالی خلیج فارس (پهنه دریایی و رودخانه های ورودی)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه بوعلی‌سینا، همدان

2 پژوهشکده علوم‌زمین، سازمان زمین‌شناسی و اکتشافات معدنی کشور، تهران

10.22084/psj.2019.2985

چکیده

در این پژوهش، اجزای رسوبی و کانی­ها در بخش شمالی خلیج­فارس و رودخانه­های ورودی به آن بررسی شده است. این مطالعه بر اساس ویژگی­های رسوب­شناختی (اندازه ذرات، نوع رسوب و اجزای تشکیل­دهنده) و کانی­شناختی با استفاده از داده­های بدست آمده در این پژوهش صورت گرفته است. 200 نمونه­ی رسوب سطحی از ژرفای آب بین 10 تا 100 متر از مناطق ساحلی تا بخش­های ژرف ایرانی بستر خلیج­فارس و رودخانه­های ورودی به آن (ژرفای آب بین 1 تا 4 متر) با نمونه­گیر فکی برداشت ­شده و از نظر اندازه ذرات، محتوای زیستی و آواری و کانی­شناسی (آنالیز پراش اشعه­ایکس) تحت آنالیز قرار گرفتند. رسوبات بستر از ذرات آواری به نسبت کم­تر (نظیر کوارتز، فلدسپار، میکا و خرده­سنگ) و آلی- زیستی به نسبت بیش­تر (نظیر گاستروپودا، استراکودا، اکینودرم، بریوزوا و فرامینیفر­های پلانکتونیک و کف­زی) تشکیل شده­اند. بیش از 50 درصد از اجزای بستر از ذرات در اندازه سیلت و رس (گل) تشکیل شده است. 4 نوع رسوب عمده (گل با کمی گراول، گل­ماسه­ای، گل­گراولی و گل­ماسه­ای با کمی گراول) بیش از 75 درصد از رسوبات بستر را تشکیل می­دهند. اجزای آواری حوضه پیش­بوم خلیج­فارس تقریبا از فرسایش کمربند کوهستانی آناتولی- زاگرس نشات می­گیرند. مشابهت رسوبات رودخانه­ای و دریایی کم­ژرفا و ژرف (به استثنای  قطعات پوسته در رسوبات دریایی) نشان­دهنده منشا یکسان آن­ها است. علاوه بر آن، تاثیر مکانیسم­های گوناگون انتقال رسوبات نظیر جریان­های تحت تاثیر امواج، رودخانه­ای و جزر و مدی در پراکندگی رسوبات در مناطق کم­ژرفا در این پژوهش دوباره به اثبات رسیده است. رودخانه­های ورودی به خلیج­فارس از عوامل مهم در تامین و انتقال اجزای آواری (ذرات دراندازه گراول – رس) به بخش شمالی آن هستند. اجزای آواری و آلی- زیستی توسط جریان­های دریایی و جزر و مدی در تمام خلیج­فارس پـراکنده مـی­شوند. اغلب کانی­های رسی (کائولینیت، ایلیت، اسمکتیت، کلریت) به استثنای پالی­گورسکیت (منشا اتوژنیک) در بخش شمالی خلیج­فارس از نوع آواری هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Distribution of sedimentary constituents and mineralogy in the northern part of the Persian Gulf (marine area and incoming rivers)

نویسندگان [English]

  • R. Behbahani 1
  • R. Lak 2
چکیده [English]

Sedimentological aspects of the Iranian side of the Persian Gulf were investigated in present study. The research objective was to identify the sediment components and compositions of the Persian Gulf continental shelf and incoming rivers. In total, 200 surface samples were collected from bed materials of the study area ranging 10 to 100 m water depths and incoming rivers (between 1 to 4 m water depths) using Van Veen Grab. Sample preparation was implemented to granolumetric test to identify biota and detrital content and to determine mineralogy (x-ray diffraction analysis) of sediments. Results showed low contribution of detrital components (i.e. quartz, feldspar, mica and rock-fragment) and high contribution organic-biogenic components (i.e. gastropoda, ostracoda, echinoderm, bryozoan and benthonic-planktonic foraminifera) in sediment composition. Accordingly, more than 50% of seabed components composed of mud (silt and clay)-size particles. Four types of sediment textures, slightly gravelly mud, sandy mud, gravelly mud and slightly gravelly sandy mud have formd more than 75% of these sediments. Detrital components of the Persian Gulf foreland basin are drived almost the Anatolia-Zagros mountain belt.  The similarity of fluvial and shallow-deep marine sediments (with the exception of shell-fragments in marine deposits) indicates similarity in their origins. In addition, effects of various sediment transport mechanisms such as fluvial, tidal and wave-induced currents on distribution of sediments in the shallow zone have been proved agine in present study. Incoming rivers to the northern part of the Persian Gulf are the most important factors in supplying and transporting detrital components. Detrital and organic-biogenic components are scattered by tidal and marine currents across the Persian Gulf. The most clay minerals (kaolinite, illite, smectite and chlorite) with the exception of palygorskite (autogenic origin) are detrital in the northern part of the Persian Gulf.

کلیدواژه‌ها [English]

  • Sediment components
  • Persian Gulf
  • mineralogy
  • Detrtal particles
  • Clay mineral
امجدی، ص.، موسوی­حرمی، ر.، محمودی­قرائی، م. ح.، محبوبی، ا.، کتک لاهیجانی، ح. ع (1390) کانی­شناسی رس­های موجود در رسوبات فلات قاره دریای عمان- ناحیه چابهار و ارتباط آن با برخاستگاه رسوبات. اقیانوس­شناسی، ش. 8، ص. 1- 10.

بهبهانی، ر.، لک، ر.، حسین­یار، غ.، دهقان، ا (1392) تاثیر اکسیژن محلول، محتوی زیستی، زیست­آشفتگی و اندازه ذرات بر قابلیت حفظ مواد آلی در رسوبات سطحی بخش شمالی خلیج­فارس. اقیانوس­شناسی، ش. 14، ص. 45- 56.

بهبهانی، ر.، حسین­یار، غ.، لک، ر.، قرائی، ا.، انسانی، م. و چایچی­زاده، س (1390) مطالعه اشکال و رسوبات بستر تنگه خوران (لافت- پهل)، شرق خلیج­فارس. مجله پژوهش­های چینه­نگاری و رسوب­شناسی، دانشگاه اصفهان، ش. 4، ص. 101 -120.

چنانی، ن.، لک، ر (1388) گزارش  بررسی زمین­شناسی دریایی خلیج­فارس، فاز I: رسوب­شناسی و ژئوشیمی رسوبی نواحی شمال باخـتری خلـیج­فارس، سـازمان زمین­شناسی و اکتـشافات معدنی کـشور، مدیـریـت زمین­شناسی دریایی، 124 ص.

دهقان­چناری، ا (1393) گزارش مورفومتری و کانی­شناسی رسوبات خاور خلیج­فارس (باختر استان هرمزگان)، سازمان زمین­شناسی و اکـتشافات مـعدنی کشور، مـدیریـت زمین­شناسی دریایی، 130 ص.

دهقان­چناری، ا (1391) گزارش مورفومتری و کانی­شناسی رسوبات خاور خلیج­فارس (محدوده خاوری استان بوشهر)، سازمان زمین­شناسی و اکتشافات معدنی کشور، مدیریت زمین­شناسی دریایی، 134 ص.

سازمان بنادر و دریانوردی (1389) گزارش معرفی سلول­های مطالعه رسوب. پروژه پایش و مطالـعات شبـیه­سازی بخش­هایی از سواحل استان­های سیستان و بلوچستان و بوشهر، اداره کل مهندسی سواحل و بنادر، مهندسین مشاور سوگرا، 141 ص.

سازمان جغرافیایی نیروهای مسلح (1382) جغرافیای جزایر ایرانی خلیج­فارس (قشم، لارک، هرمز و هنگام). 627 ص.

Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie, P., Meyer, B., Wortel, R (2011) Zagros orogeny: a subduction-dominated process. Geological Magazine, 148: 692-725.

Ahmady-Birgani, H., Mcqeen, K. G., Mirnejad, H (2018) Characteristics of mineral dust impacting the Persian Gulf. Aeolian Research, 30: 11-19.

Alavi, M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am. J. Sci, 304: 1–20.

Al-Azhar, M., Temimi, M., Zhao, J., Ghedira, H (2016) Modeling of circulation in the Arabian Gulf and the Sea of Oman: skill assessment and seasonal termohaline structure. Journal of Geophysical Research, 121: 1700-1720.

Albadran, B., Hassan, W. F (2003) Clay mineral distribution of supratidal region, South of Iraq. Journal of Marine Mesopotamica, 18: 25-33.

Al-Bakri, D., El-sayed, M (1991) Mineralogy and provenance of the clastic deposit of the modern intertidal environment of the northern Persian Gulf, Marine Geology, 97: 121-135.

Al-Dabbagh, S. M., Albadran, B (1995) Clay minerals in the sediments of the North West part of the Arabian Gulf, Iraq. Marina Mesopotamica, 10: 223-230.

Al-Dousari, A., Doronzo, D., Ahmed, M (2017) Types, indications and impact evaluation of sand and dust storms trajectories in the Arabian Gulf. Sustainability, 9: 1526, 1-14.

Al-Mussawy, S. N., Basi, M. A (1992) Clay minerals of suspended-matter and surficial sediments of Khor Al-Zubair estuary, NW Arabian Gulf. Estuarine, Coastal and Shelf Science, 35: 1-11.

Aqrawi, A. A. M (1993) Palygorrskite in the recent fluvio-lacustrine and deltaic sediment of southern Mesopotamia. Jour. Clay Minerals, 28: 153-159.

Aqrawi, A. A. M (1994) Petrography and mineral content of sea-floor sediments of the Tigris-Euphrates Delta, North-west Arabian Gulf, Iraq. Estuar. Coast. Shelf Sci, 38: 569–582.

Barth, H. J., Yar Khan, N (2008) Biogeophysical setting of the Persian Gulf. In: Abuzinada, A. H., Barth, H. J., Krupp, F., Boer, B., Al-Abdessalaam, T. Z., (eds.), protecting the Persian Gulf,s marine ecosystems from pollution. Birkhauser, Switzerland, 285 p.

Behbahani, R., Hosseinyar, G., Lak, R (2015) The controlling parameters on organic matter preservation within the bottom sediments of the northern part of the Persian Gulf. N. Jb. Geol. Palaont. Abh, 276: 267-283.

Bruthans, J., Fillipi, M., Asadi, N., Zare, M., Slechta, S., Churackova, Z (2009) Suficial deposits on salt diapirs (Zagros Mountains and Persian Gulf platform, Iran): characterization, evolution, erosion and the influence on landscape morphology. Geomorphology, 107: 195-209.

Burberry, C. M., Jackson, C. A. L., Cosgrove, J. W. C (2011) Late Cretaceous to recent deformation related to inherited structures and subsequent compression within the Persian Gulf: a 2D seismic case study. Journal of geological Society, 168: 485-498.

Carruba, S., Bertozzi, G., Perotti, C. R., Rinaldi, M (2007) Alcuni aspetti del diapirismo salino nel Golfo Persico. Rend. Soc. Geol. Ital, 4: 188-190.

Carruba, S., Perotti, C. R., Buonaguro, R., Calabro, R., Carpi, R., Naini, M (2006) Structural pattern of the Zagros fold-and-thrust belt in the Dezful Embayment (SW Iran). Geological Society of America Special Papers 414, 11-32.

Folk, R.L (1974) Petrology of sedimentary rocks. Hemphill, Austin, Texas, 159 p.

Garzanti, E., Al-Juboury, A. I., Zoleikhaei, Y., Vermeesch, P., Jotheri, J., Bal-Akkoca, D., Kadhim-Obaid, A., Allen, M. B., Ando, S., Limonta, M., Padoan, M., Resentini, A., Rittner, M., Vezzoli, G (2016) The Euphrated-Tigris-Karun river system: provenance, recycling and dispersal of quartz-poor foeland-basin sediments in arid climate. Earth-Science Reviews, 162: 107-128.

Gharibreza, M. R., Habibi, A., Imamjomeh, S. R., Ashraf, M. A (2014) Coastal processes and sedimentary facies in the Zohreh River Delta (northern Persian Gulf). Catena, 122: 150-158.

Heyvaert, V. M. A., Baeteman, C (2007) Holocene sedimentary evolution and palaeocoastlines of the Lower Khuzestan plain (Southwest Iran). Marine Geology, 242: 83-108.

Hopner, T (1999) Intertidal treasure Khowr-e-Mussa unraised, Wadden Sea Newsletter, Germany, 1: 3-6.

Hughes Clarke, M. W., Keij, A (1973) Organisms as producer of carbonate sediment and indicators of environment in the southern Persian Gulf. In: Purser, B. H., (eds.), the Persian Gulf: Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea. Springer-Verlag, Berlin, New York, 35-56.

Kampf, J., Sadrinasab, M (2006) The circulation of the Persian Gulf: a numerical study. Ocean Sci, 2: 27-41.

Lambeck, K (1996) Shoreline reconstructions for the Persian Gulf since the last glacial maximum. Earth and Planetary Science Letters, 142: 42-57.

Meunier, A (2005) Clays. Springer-Verlag, Berlin, Heidelberg, 472 p.

Mouthereau, F., Lacombe, O., Verges, J (2012) Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics, 532-535: 27-60.

Okay, A. I (2008) Geology of Turkey: a synopsis. Anschnitt, 21: 19–42.

Perotti, C., Chiariotti, L., Bresciani, I., Cattaneo, L., Toscani, G (2016) Evolution and timing of salt diapirism in the Iranian sector of the Persian Gulf. Tectonophysics, v. 679, 180-198.

Pous, S., Carton, X., Lazure, P (2012) A process study of the tidal circulation in the Persian Gulf. Open Journal of Marine Science, 2: 131-140.

Purser, B. H., Evans, G (1973) Regional sedimentation along the Trucial Coast, SE Persian Gulf. In: Purser, B. H., (eds.), the Persian Gulf: Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea. Springer-Verlag, Berlin, New York, 211-231.

Purser, B. H., Seibold, E (1973) The principal environmental factors influencing Holocene sedimentation and diagenesis in the Persian Gulf. In: Purser, B. H., (eds.), the Persian Gulf: Holocene carbonate sedimentation and diagensis in a shallow epicontinental sea. Springer-Verlag, Berlin, NewYork, 1-9.

Reynolds, R. M (1993) Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of the Oman—Results from the Mt Mitchell expedition the 1991 Gulf war: coastal and marine environmental consequences. Marine Pollution Bulletin, 27: 35-59.

Sadrinasab, M., Hosseini, S. T (2012) Numerical modeling of surface and near bottom currents in the Bushehr Bay. Journal of the Persian Gulf, 3: 71-81.

Seibold, E., Diester, L., Futterer, D., Lange, H., Muller, P., Warner, F (1973) Holocene sediments and sedimentary processes in the Iranian part of the Persian Gulf. In: Purser, B. H., (eds.), The Persian Gulf: Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea. Springer-Verlag, Berlin, NewYork, 57-80.

Sharland, P. R., Archer, R., Casey, D. M., Davies, R. B., Hall, S. H., Heward, A. P., Horbury, A. D., Simmons, M. D (2001) Arabian plate sequence stratigraphy, GeoArabia Special Publication 2, Persian Gulf Petrolink, Bahrain, 371 p.

Stevens, T., Jestico, M. J., Evans, G., Kirkham, A (2014) Eustatic control of late Quaternary sea-level change in the Persian Gulf. Quaternary Research, 82: 175-184.

Teller, J. T., Glennie, K. W., Lancaster, N., Singhvi, A. K (2000) Calcareous dunes of the United Arab Emirates and Noah, flood: the postglacial reflooding of the Persian Gulf. Quaternary International, 68: 297-308.

Tucker, M. E (1994) Sedimentary petrology, 2nd edn. Blackwell, 272 p.

Wood, W. W., Baily, R. M., Hampton, B. A., Kraemer, T. F., Lu, Z., Clark, D. W., James, R. H. R., Al- Ramadan, K (2012) Rapid late Pleistocene/ Holocene uplift and coastal evolution of the southern Persian Gulf. Quaternary Research, 77: 215-220.

Yao, F (2008) Water mass formation and circulation in the Persian Gulf and water exchange with the Indian Ocean. Phd thesis, Miami University, Florida, 140 p.