کاربرد زنجیره مارکوف در تفسیر توالی های رسوبی، مطالعه موردی نهشته های کربناته سازند مبارک (البرز خاوری، شمال ایران)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه فردوسی مشهد، مشهد ****** گروه زمین شناسی، دانشکده علوم، مجتمع آموزش عالی گناباد

2 دانشکده علوم زمین، دانشگاه تحصیلات تکمیلی علوم پایه زنجان، زنجان

3 گروه زمین شناسی، دانشکده علوم پایه، دانشگاه فردوسی مشهد، مشهد

4 گروه زمین شناسی، دانشکده علوم زمین، دانشگاه خوارزمی، تهران

10.22084/psj.2019.18599.1197

چکیده

توالی­های کربناته سازند مبارک، به سن می­سی­سی­پی ان، واقع در البرز مرکزی و خاوری در دو برش تویه رودبار و کوه سیاهه، دارای مجموعه متنوعی از اثرفسیل­ها هستند. در این پژوهش چرخه­های مختلف واحد­های سنگی سازند مبارک با بهره­گیری از روش مارکوف و مشاهدات میدانی بررسی شد و برپایه ارائه یک توالی ایده­ال، محیط­رسوبی آن تفسیر شد. برای انجام این کار، رسوبات این سازند به 5 مجموعه رخساره­ای تناوب سنگ­آهک­های آرژیلی و شیل­های تیره­رنگ دارای ایکنوفاسیس زئوفیکوس، سنگ­آهک­های نازک تا متوسط لایه دارای ایکنوفاسیس کروزیانا، سنگ­آهک­های دارای ایکنوفاسیس اسکولایتوس، سنگ­آهک­های متوسط تا ستبر لایه دارای مخلوط ایکنوفاسیس کروزیانا و اسکولایتوس و تناوب سنگ­آهک و شیل بدون تریس فسیل تقسیم شد. بررسی زنجیره مارکوف نشان می­دهد که رسوبات سازند مبارک از چرخه­های ستبر شونده به سمت بالا تشکیل شده­اند. یک چرخه کامل از قاعده به سمت بالا شامل تناوب سنگ آهک و شیل بدون تریس فسیل، سنگ­آهک­های آرژیلی و شیل­های تیره­رنگ دارای ایکنوفاسیس زئـوفیکوس، کربنات­های نازک تا متوسط لایه دارای ایکنوفاسیس کروزیانا، کربنات­های دارای ایکنوفاسیس اسکولایتوس، کربنات­های متوسط تا ستبر لایه دارای مخلوط ایکنوفاسیس کروزیانا و اسکولایتوس است. گسترش چرخه­های رسوبی دارای ایکنوفاسیس­ها پایهاً توسط عوامل محیطی از جمله نوع رسوب، مواد غذایی در دسترس، میزان اکسیژن و سطح انرژی کنترل می­شود. در این سازند، 4 ایکنوفاسیس شناسایی شد که شامل ایکنوفاسیس کروزیانا، اسکولایتوس، زئوفیکوس و مخلوط کروزیانا- اسکولایتوس است. رسوبات رمپ درونی در این سازند، شامل عناصر اسکولایتوس با تنوع کم است. در نهشته­های دیستال رمپ درونی و پروکسیمال رمپ میانی سازند مبارک، وجود اثرات زیستی جانوران رسوب تا معلق­خوار (مخلوط کروزیانا- اسکولایتوس) نشان از فراوانی مواد غذایی در بستر و ستون آب می باشد. رسوبات رمپ میانی سازند مبارک، شامل مجموعه متنوعی از اثرفسیل­ها در محیط کاملاً دریایی است، که وجود ساختارهای تغذیه کننده از رسوبات و گریزینگ (ایکنوفاسیس کروزیانا) نشانگر چنین محیطی است. رسوبات رمپ بیرونی سازند مبارک، دارای مجموعه ای از اثرفسیل­ها است که وجود ساختارهای گریزینگ و استراحت (ایکنوفاسیس زئوفیکوس) چنین محیطی را نشان می­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Markov Chain Method in depositional sequences interpretation to provide ichnological model of carbonate sediments of the Mobarak Formation (central and eastern Alborz Zone, North Iran)

نویسندگان [English]

  • Y. Nasiri 1
  • A. Bayet-Goll 2
  • A. Mahboubi 3
  • S. R. Moussavi-Harami 3
  • H. Mosaddegh 4
چکیده [English]

The carbonate succession of the Mobarak Formation (Mississippian) located in Central and Eastern Alborz, have a diverse trace fossils in Toyeh Rodbar and Siaheh mountain sections. In this research, different lithofacies cycles of the Mobarak Formation are examined by Markov method as well as field observations, and depositional environment has interpreted by proposed ideal sequence. To do this, the deposits of this Formation have divided into five lithofacies associations including argilaceous limestones intercalated with dark shales bearing Zoophycos ichnofacies, thin- to medium-bedded limestones bearing Cruziana ichnofacies, limestones bearing Skolithos ichnofacies, medium- to thick-bedded limestones bearing mixed Skolithos and Cruziana ichnofacies, and limestones intercalated shales without any trace fossils. Markov chain analysis shows that Mobarak Formation deposits are composed of coarsening upward cycles. A complete cycle from base to top consists of limestones intercalated shales without any trace fossils, argilaceous limestones intercalated with dark shales bearing Zoophycos ichnofacies, thin- to medium-bedded limestones bearing Cruziana ichnofacies, limestones bearing Skolithos ichnofacies, and medium- to thick-bedded limestones bearing mixed Skolithos and Cruziana ichnofacies. The development of sedimentary cycles bearing Ichnofacies is primarily controlled by environmental factors, e.g. sediment type, food accessibility, oxygenation and energy level. In this Formation, four ichnofacies have been recognized including Cruziana, Skolithos, Zoophycos and mixed Skolithos–Cruziana ichnofacies. The inner ramp sediments are characterized by low-diversity Skolithos elements.  In the distal inner ramp and proximal middle ramp sediments of Mobarak Formation, the presence of suspension to deposit-feeding trace-makers (mixed Skolithos–Cruziana) indicate the presence of adequate food resources in both the substrate and in the water column. The Middle ramp deposits of Mobarak Formation are characterized by different trace-fossils association consistent with fully marine environment which presence of deposit-feeding structures, with associated grazing structures (Cruziana ichnofacies), supports a middle ramp setting.  

کلیدواژه‌ها [English]

  • Mobarak Formation
  • Alborz Zone
  • Ichnofacies
  • Markov chain
آقانباتی، ع (1383) زمین­شناسی ایران، سازمان زمین­شناسی و اکتشافات معدنی کشور، 586 ص.
صالحی­راد، ر.، علوی، ب.م.، ژنی، ژ.، استامپفلی، ژ.، شهرابی، م (1369) نقشه زمین­شناسی ایران، سری 1:250000، گرگان، سازمان زمین-شناسی و اکتشافات معدنی کشور.
Alpaydın, E (2010) Introduction to Machine Learning. Second Edition, the MIT Press, 361-384.
Angulo, S. and Buatois, L. A (2012) Ichnology of a Late Devonian–Early Carboniferous low-energy seaway: The Bakken Formation of subsurface Saskatchewan, Canada: Assessing paleoenvironmental controls and biotic responses. Palaeogeography, Palaeoclimatology, Palaeoecology, 315: 46-60.
Asserto, R (1963) The Paleozoic Formations in Central Alborz (Iran). (Preliminary Notr). Rivista Italian Dipaleontologia e Stratigrafia, 69: 503-543.
Bayet-Goll, A., Shirezadeh-Esfahani, F., Daraei, M., Monaco, P., Sharafi, M., Akbari Mohamadi, A (2018a) Cyclostratigraphy across a Mississippian carbonate ramp in the Esfahan-Sirjan Basin, Iran: implications for the amplitudes and frequencies of sea-level fluctuations along the southern margin of the Paleotethys. International Journal of Earth Science, doi: 10.1007/s00531-018-1597-7.
Bayet-Goll, A., De Carvalho, C. N., Daraei, M., Monaco, P., Sharafi, M (2018b) Sequence stratigraphic and sedimentologic significance of the trace fossil Rhizocorallium in the Upper Triassic Nayband Formation, Tabas Block, Central Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 491: 196-217.
Billingsley, P (1961) Statistical methods in chains, Arm. Math. Statist. 32: 12-40.
Billinton, R (1992) Reliability Evaluation of Engineering Systems: concepts and techniques, Springer, 222: 260-277.
Buatois, L. A., and Mángano, M. G (1995) The palaeoenvironmental and palaeoecological significance of the Mermia ichnofacies: an archetypal subaqueous non-marine trace fossil assemblage. Ichnos, 4: 151–161.
Bromley, R. G (1996) Trace Fossils: Biology Taphonomy and Applications, 2nd ed. Chapman & Hall, London, 361p.
Carr, T (1982) Log-Linear Models Markov chains and cyclic sedimentation. Journal of Sedimentary Petrology, 52: 905-912.
Casshyap, S. M (1975) Cyclic characteristics of coal-bearing sediments in the Bochumer Formation (westphal A 2) Ruhrgebiet, Germany. Sedimentology, 22: 237-255.
Davies, N. S., Ivan, J. S., Guillermo, L. A., Ricardo, C (2007) Ichnology, palaeoecology and taphonomy of a Gondwanan early vertebrate habitat: Insights from the Ordovician Anzaldo Formation, Bolivia. Palaeoecology, 249: 18–35.
Dorador, J. and Rodríguez-Tovar, F. J (2018) High-resolution image treatment in ichnological core analysis: initial steps, advances and prospects. Earth Sciences Reviews, 177: 553–567.
Fürsich, F. T., Uchman, A., Alberti, M., Pandey, D. K (2018) Trace fossils of an amalgamated storm-bed succession from the Jurassic of the Kachchh Basin, India: The significance of time-averaging in ichnology. Journal of
Palaeogeography, 7(1): 13-61.
Gallagher, k., Charvin, K., Nielsen, S., Sambridge, S., Stephenson, J (2009) Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems, Journal of Marine and Petroleum Geology, 525-535.
Gingras, M. K., MacEachern, J. A., Dashtgard, S. E (2011) Process ichnology and the elucidation of physico-chemical stress. Sedimentary Geology, 237: 115-134.
Harbaugh, J. W., and Bonham-Carter, G (1970) Computer simulation in Geology. Wiley Interscience, New York, 575p.
Harding, S. C., and Ekdale, A. A (1092) Trace fossils and glauconitic pellets provide insight into Cambrian siliciclastic marine environments. Palaios, 66: 523–532.
Hota, R. N., and Maejima, W (2004) Comparative study of cyclicity of lithofacies in Lower Gondwana formations of Talchir basin, Orissa, India: A statistical analysis of subsurface logs. Gondwana Research,7: 353–362.
Hota, R. N., Pandya, k. l., Maejima, W (2003) Cyclic sedimentation and facies organization of the coal bearing Barakar Formation, Talchir Gondwana basin, Orissa, India: a statistical analysis of subsurface logs. Journal of the Geological Society of India, 46: 1-11.
Kikichi, K., Naruse, H., Kotake, N (2019) Evaluation of ichnodiversity by image-resampling method to correct outcrop exposure bias. Palaios, 66(2): 523-517.
MacEachern, J. A., Bann, K. L., Pemberton S. G., Gingras, M. K (2007) The ichnofacies paradigm: High-resolution paleoenviromental interperetof the rock record. In: McIlroy, D. (ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis, Geological Society, London, Special Publication, 228: 179-212.
Mcllroy, D (2004) The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Special Publication of the Geological Society, London, 228: 1–490.
Miall, A. D (1973) Markov Chain analysis applied to an alluvial plain succession. Sedimentology, 20: 347-364.
Nasiri, Y., Mahboubi, A., Moussavi-Harami, R., Yousefi, B (2013) Cyclic Sedimentation of the Amiran Formation for Subsurface Characterization in the Zagros fold–thrust belt (Application of Markov Chain Method in depositional sequences interpretation). Journal of Tethys, 1(2): 113-127
Nasiri, Y., Moussavi-Harami, R., Mahboubi, A., Olivero, D., Mosaddegh. H (2018) Zoophycos ichnogenus distribution and paleoenvironmental analysis: examples from the Mississippian Mobarak formation (Alborz Basin, Iran). Historical Biology, https://doi.org/10.1080/08912963.2018.1540614.
Nasiri, Y., Moussavi-Harami, R., Mahboubi, A., Mosaddegh. H (2019) Sequence stratigraphic significance of shell concentrations in the Mobarak Formation (Mississippian), Alborz Zone, Northern Iran. Neues Jahrbuch für Geologie und Paläontologie, 2: 1-25.
Nath, R. and Sahoo, M (2009) Cyclic Sedimentation of the Karharbari Formation (Damuda Group),    Talchir Gondwana Basin, Orissa. Geological Society of India, 73: 469-478.
Pemberton, S. G. and Wightman, D. M (1992) Ichnological characteristics of brackish water deposits. In: Pemberton, S.G. (ed.), Applications of Ichnology to Petroleum Exploration. SEPM Core Workshop, 17: 141–169.
Pemberton, G. S., Spila, M., Pulham, A. J., Saunders, T., Robbins, D., Sinclair, I. K (2001) Ichnology and sedimentology of shallow to marginal marine systems. Geological Association of Canada Short Course Volume 15.
Powers, D., and Easterling, R (1982) Improved Methodology for using Embedded Markov chains to describe cyclical sediments. Journal of Sedimentary Petrology, 52: 913-923.
Reading, H. G (1996) Sedimentary Environment. Third ed., Blackwell, Oxford, 888p.
Read, W. A. and Dean, J. M (1967) A quantitative study of a sequence of coal bearing cycles in the Namurian of Central Scotland. Sedimentology, 9: 137-156.
Rodríguez-Tovar, F. G., Miguez-Salas, O., Dorador, J., Duarte, L. V (2019) Opportunistic behaviour after the Toarcian Oceanic Anoxic Event: The trace fossil Halimedides. Palaeogeography, Palaeoclimatology, Palaeoecology, https://doi.org/12.1213/j.palaeo.5212.21.263.
Taylor, A. M., Goldring, R., Gowland, S (2003) Analysis and application of ichnofabrics. Earth Science Reviews, 60: 227–259.