واحدهای جریانی هیدرولیکی ریزرخساره های مخزنی ناحیه پشته کربناته نهشته های سازند کنگان (تریاس پیشین) و ارتباط آن با محیط رسوبی و دیاژنز

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زمین شناسی، دانشکده علوم پایه، دانشگاه هرمزگان

چکیده

دسته­بندی کمی و کیفی ویژگی​های سنـگ​های مخزن هـیدروکربنی یکی از مـباحث پایه­ای و مـهم در پژوهـش​های زمین­شناسی مخازن است. امروزه، واحدبندی​های گونه​های سنگ مخزن با اعمال روابط ریاضی بر روی شاخص​های تخلخل و تراوایی انجام می​پذیرد. از آنجا که ویژگی​های مخزنی نهشته​ها در وابستگی مستقیم با شرایط ته​نشینی و رسوب​گذاری آن​ها است، تاثیر مـحیط رسـوب​گذاری و دیـاژنز می­بایست در این دسته­بندی​ها مورد توجه قرار گیرد. در این پژوهش، با بهره­گیری از نتایج واکاوی مغزه از نهشته​های سازند کنگان (تریاس پیشین) در 6 چاه از یکی از میدان­های هـیدروکربنی خلیج​فارس، واحدهای جریانی هیدرولیکی با بهره­گیری از شاخص زون جریانی و گونه​های سنگی ناپیوسته بررسی و معرفی شد. واحد شماره 4 (HFU-4)، با دارا بودن ریزرخساره​های گرینستونی وابسته به محیط پشته کربناته دارای بهترین کیفیت مخزنی است. بررسی جایگاه محیط­رسوبی و فرآیندهای دیاژنزی ریزرخساره​های وابسته به واحد شماره-4، نشان می​دهد ریزرخساره­های ااوئید گرینستونی زیرواحد 4ب واقع در ناحیه مرکزی پشته کربناته بهترین ویژگی­های مخزنی را دارا هستند. در این ریزرخساره​ها به دلیل کارکرد دیاژنز، تخلخل​های قالبی و درون­دانه​ای طی فرآیند انحلال بهم متصل شده و با مقدار میانگین تخلخل 13 درصد و میانگین تراوایی 199میلی­دارسی، بهترین واحد جریانی هیدرولیکی را ساخته­­اند. 

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of hydraulic flow units of carbonate shoal reservoir facies of Kangan formation (early triassic) and its relationship with depositional environment and diagenesis

نویسندگان [English]

  • M. Sabouhi
  • P. Rezaee
چکیده [English]

Quantitative and qualitative classification of hydrocarbon reservoir rocks is one of the most important issues in geological reservoir studies.  Nowadays, classifications of reservoir rock type are carried out by applying mathematical relationships to porosity and permeability parameters. Since the reservoir properties of the succession are directly related to their depositional environment and sedimentary conditions, therefore the influence of sedimentation and diagenesis should be considered in these classifications. In this study, based on core analysis results from Kangan Formation in six wells in one of the Persian Gulf hydrocarbon fields, hydraulic flow units were investigated by using FZI/RQI and DRT methods. The Unit 4 (HFU-4) has the best reservoir properties index that including the grainstone facies which is deposited in carbonate shoal environment.  In this research, based on Carbonate shoal environment setting and diagenesis effects on that, the HFU4-B class that deposited in the center part of carbonate shoal environment, introduce for the best reservoir quality facies. Connected Moldic and interparticle porosities have the main diagenesis parameters that effect to increase the quality of reservoir properties. This facies with 13% average porosity and 199MD permeability has the best hydraulic reservoir unit.

کلیدواژه‌ها [English]

  • hydric flow unit
  • reservoir quality
  • diagenesis
  • microfacies
  • Kangan formation
دانیالی؛ ع.، غضنفری، پ.، کدخدائی، ع (1392) بررسی تخلخل و تراوایی در سنگ­های مخزن سازندهای دالان و کـنگان در میـدان گازی پارس جنوبی. دوفصل­نامه رسوب­ شناسی کاربردی، دوره 1، شماره 2، ص 28-16.
درفشی، م.، رحیم ­پوربناب، ح.، کدخدایی، ع.، احمدی، ا (1398) بررسی نقش نوع و اندازه شعاع گلوگاه منافذ در تعیین واحدهای جریانی با استفاده از نمودار انحراف سرعت و داده­های مغزه در میدان نفتی دورود، سازند فهلیان. نشریه پژوهش نفت، شماره 104، فروردین واردیبهشت 1398. ص 71-83.
رحیم­ پوربناب، ح.، علـی اکبردوست، ا (1392) تعیـین رخسـاره ­های مخزنی در سنگ­های کربناته براســاس مغزه ­های تزریق جیوه و انواع تخلخل در سازندهای دالان و کنگان، مـیدان گـازی پارس جـنوبی، دوفصل­نامـه رسوب­ شناسی کاربردی، دوره1، شماره 2، ص 15-1.
عبدی، ف.، کمالی، م.، آل­ علی، م (1397) تعیین گونه­ های سنگی با استفاده از مفهوم واحدهای جریان هیدرولیکی و بررسی توزیع آن توسط شبیه ­سازی شاخص متوالی، در مخزن سورمه بالایی (عرب) در یکی از میادین نفتی جنوب ایران. دوفصل­نامه رسوب­ شناسی کاربردی، دوره 6، شماره 12، ص102-87.
فرامرزی، س.، رحیم­ پوربناب، ح.، رنجبران، م (1397) بررسی توزیع واحدهای جریانی سازند سروک در چارچوب چینه‌نگاری سکانسی، مطالعه موردی در یکی از میادین نفتی ناحیه دشت آبادان، جنوب ­غرب ایران. دوفصل­نامه رسوب­ شناسی کاربردی، دوره 6، شماره 12، ص 25-39.
قره­ چلو، س.، امینی، ع.، کدخدائی، ع.، فرجپور، و (1393) شناسایی انواع منافذ و خواص مخزنی مرتبط با آن­ها در سازند آسماری، یکی از میادین نفتی جنوب­ غرب ایران، دوفصل­نامه رسوب­ شناسی کاربردی، دوره 2، شماره 3، ص 29-12.
کدخدائی ایلخچی، ر.، رضایی، م .ر.، موسوی­ حرمی، ر.، کدخدائی، ع (1393) بررسی رخساره­ های الکتریکی مخزنی در قالب واحدهای جریانی هیدرولیکی در میدان ویچررنج مربوط به حوضه پرت واقع در استرالیای غربی: پژوهش­های چینه­نگاری و رسوب­شناسی، شماره پیایی 54، شماره اول.
کدخدائی، ر.، نوری، ب (1395) بررسی سامانه روزنه‌ها در ارتباط با ویژگی‌های مخزنی سازندهای دالان بالایی و کنگان در میدان لاوان واقع در جنوب خاوری خلیج ‌فارس. دوفصل­نامه رسوب­ شناسی کاربردی، دوره 4، شماره 8، ص10-1.
مطیعی، ه (1382) زمین­ شناسی ایران، زمین­ شناسی نفت زاگرس، انتشارات سازمان زمین­ شناسی کشور، 109ص.
وفایی، ه .، رحیم­ پوربناب، ح.، جهانی، د.، محسنی، ح (1392) تفکیک و معرفی الگوهای رخساره­ای سازند کنگان در میدان گازی پارس جنوبی با استفاده از لاگ­های FMI. دوفصل­نامه رسوب­ شناسی کاربردی، دوره 1، شماره 2، ص 81-68.
Abbaszadeh, M., Corp, O., Fujii, H., & Oil, A (1996) Permeability Prediction by Hydraulic Flow Units Ċ Theory and Applications, (December), 263–271.
Abed, A. A (2014) Hydraulic flow units and permeability prediction in a carbonate reservoir, Southern Iraq from well log data using non-parametric correlation. International Journal of Enhanced Research in Science Technology & Engineering, 3(1): 480–486.
Ahr W. M (2008) Geology of carbonate reservoirs, John Wiley and Sons, Chichester, p. 296.
Al-ajmi, F. A., Aramco, S., & Holditch, S. A (2000) SPE 63254 Permeability Estimation Using Hydraulic Flow Units in a Central Arabia Reservoir.
Al-Jallal, I. A (1995) The Khuff Formation: its regional reservoir potential in Saudi Arabia and other Gulf countries; depositional and stratigraphic approach. In, M. I Al-Husseini (Ed.), Middle East Petroleum Geosciences, GEO’94. Gulf PetroLink, Bahrain, 1: 103-119.
Al-sharhan, A. S (1993) Facies and sedimentary environment of the Permian carbonates (Khuff Formation) in the United Arab Emirates: Sedimentary Geology, 84: 89.
Amaefule, J. O., Altunbay, M., Tiab, D., Kersey, D. G., & Keelan, D. K (1993) Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Bagheri M, Riahi MA (2015) Seismic facies analysis from well logs based on supervised classification scheme with different machine learning techniques. Arab J Geosci, 8: 7153.
Bear, J (1972) Dynamics of fluids in porous media. New York, NY: Elsevier.
Belhouchet, H. E., & Benzagouta, M. E (2019) Rock Typing: Reservoir Permeability Calculation Using Discrete Rock Typing Methods (DRT): Case Study from the Algerian BH Oil Field Reservoir. In Advances in Petroleum Engineering and Petroleum Geochemistry (pp. 9-12). Springer, Cham.
Burchette, T. P. and V. P. Wright (1992) Carbonate ramp depositional Systems. Sedimentary Geology, 79: 3–57.
Burchette, T. P., Wright, V. P., & Faulkner, T. J (1992) Oolitic sand body depositional models and geometries, Mississippian of southwest Britain: implications for petroleum exploration in carbonate ramp settings. Sedimentary Geology, 68(1-2): 87-115.
Chekani, M., & Kharrat, R (2012) An Integrated Reservoir Characterization Analysis in a Carbonate Reservoir: A Case Study. Petroleum Science and Technology, 30 (14): 1468–1485.
Doveton, J. H (2014) Principles of mathematical petrophysics. Oxford: Oxford University Press.
Dunham, R. J (1962) Classification of carbonate rocks according to depositional texture. In: AAPG Bulletin, Memoir1, p. 108–121.
Ebanks Jr, W. J (1987) Flow unit concept-integrated approach to reservoir description for engineering projects. AAPG (Am. Assoc. Pet. Geol.) Bull. (United States), 71 (CONF-870606).
El Sharawy, M. S., & Nabawy, B. S (2019) Integration of electrofacies and hydraulic flow units to delineate reservoir quality in uncored reservoirs: A case study, Nubia Sandstone Reservoir, Gulf of Suez, Egypt. Natural Resources Research, 1-22.
El Sharawy, M. S., Nabawy, B. S (2016) Determination of electrofacies using wireline logs based on multivariate statistical analysis for the Kareem Formation, Gulf of Suez, Egypt. Environmental Earth Sciences, 75 (21), Article 1394.
Elkhateeb, A., Rezaee, R., Kadkhodaie, A (2019) Prediction of high-resolution reservoir facies and permeability, an integrated approach in the Irwin River Coal Measures Formation, Perth Basin, Western Australia. Journal of Petroleum Science and Engineering 181, 1-12. Article 106226, Elsevier press.
Esrafili-Dizaji, B., Rahimpour-Bonab, H (2009) Effects of depositional and diagenetic characteristics on carbonate reservoir quality: a case study from the South Pars gas field in the Persian Gulf. Pet. Geosci, 15: 1–22.
Faraji, M. A., Kadkhodaie, A., Wood, D. A., Rahimpour-Bonab, H., Ghanavati, M (2019) Estimation and mapping of vitrinite reflectance from seismic data in South Pars gas field, Persian Gulf. Journal of Applied Geophysics 164, 1-10. Elsevier press.
Flugel, E (2010) Microfacies of carbonate rocks, Springer-Verlag, Berlin, p. 976.
Gharechelou, S., Amini, A., Kadkhodaie, A., Hosseini, Z., Honarmand, J (2018) Rock typing and reservoir zonation based on the NMR logging and geological attributes in the mixed carbonate-siliciclastic Asmari Reservoir. Geopersia 8(1), 77-98. University of Tehran Press.
Ghazban, F (2007) Petroleum Geology of the Persian Gulf, Tehran University and National Iranian Oil Company, 964-03-9420-3, p 707.
Ghorbani, M (2019) Lithostratigrapy of Iran. Springer.
Gunter, G. W., Eptg, A., Finneran, J. M., Energy, D. J. H. D. J. H., Miller, J. D., & Amoco, E (1997) SPE 38679. Early Determination of Reservoir Flow Units Using an Integrated Petrophysical Method, (1): 1–8.
Hearn, C. L., Ebanks Jr, W. J., Tye, R. S., & Ranganathan, V (1984) Geological factors influencing reservoir performance of the Hartzog Draw Field, Wyoming. Journal of Petroleum Technology, 36 (08): 1–335.
Hollis C., Vahrenkamp V., Tull S., Mookerjee A., Taberner C. and Huang Y (2010) Pore system characterization in heterogeneous carbonates: an alternative approach to widely-used rock-typing methodologies,” Marine Petroleum Geology, 17 (3): 272-293.
Insalaco, E., Virgone, A., Courme, B., Gaillot, J., Kamali, M. R.,  Moallemi, S. A., Lotfpour, M. and Monibi, S (2006) Upper Dalan Member and Kangan Formation between the Zagros Mountains and offshore Fars, Iran: depositional system, biostratigraphy and stratigraphic architecture. GeoArabia, 11 (2): 75-176.
Jafarzadeh, N., Kadkhodaie, A., Jan Ahmad, B., Kadkhodaie, R., Karimi, M (2019) Identification of electrical and petrophysical rock types based on core and well logs: Utilizing the results to delineate prolific zones in deep water sandy. Journal of Natural Gas Science and Engineering 69, 1-12. Paper 102923, Elsevier press.
Kadkhodaie, A (2015) Application of Fuzzy Inference System to Estimating Rock Properties from Well Logs and Seismic Data, 1-36p in the Book titled “Application of Artificial Intelligence Methods in Geosciences and Hydrology” Edited by A. A. Nadiri Published by OMICS Group eBooks, 126p. ISBN: 978-1-63278-061-4, USA.
Kadkhodaie, A., Rezaee, R., Kadkhodaie, R (2019) An effective approach to generate drainage representative capillary pressure and relative permeability curves in the framework of reservoir electrofacies. Journal of Petroleum Science and Engineering, 176: 1082-1094. Elsevier press.
Kashfi, M. S (2000) the greater Persian Gulf Permian- Triassic stratigraphic nomenclature requires study: Oil and Gas Journal, Tulsa, November 6, p. 36-44.
Kidder, D. L., Worsley, T. R (2004) Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Paleogeogr. Palaeoclimatol. Palaeoecol, 203: 207–237.
Konert, G (2001) Paleozoic Stratigraphy and Hydrocarbon Habitat of the Arabian Plate. GeoArabia, 6 (3): 2001.
Lee, S. H., Kharghoria, A., and Datta-gupta, A (2002) Electrofacies Characterization and Permeability Predictions in Complex Reservoirs: SPE Reservoir Evaluation & Engineering, 237-248.
Mohebian, R., Riahi, M. A., Kadkhodaie, A (2019) Characterization of hydraulic flow units from seismic attributes and well data based on a new fuzzy procedure using ANFIS and FCM algorithms, example from an Iranian carbonate reservoir. Carbonates and Evaporites, 34 (2): 349-358. Springer.
Moradpour, M., Zamani, Z., Moallemi, S. A (2008) Controls on reservoir quality in the Lower Triassic Kangan Formation, Southern Persian Gulf. J. Petrol. Geol, 31: 367–386.
Nabawy, B. S., Barakat, M. Kh (2017) Formation Evaluation using conventional and special core analyses: Belayim Formation as a case study, Gulf of Suez, Egypt. Arabian Journal of Geosciences, 10(25): 1-23.
Nabawy, B. S., Geraud, Y (2016) Impacts of pore- and petro-fabrics, mineral composition and diagenetic history on the bulk thermal conductivity of sandstones, Journal of African Earth Sciences, 115: 48-62.
Nabawy, B. S., Shehata, A. M (2015) Integrated petrophysical and geological characterization for the Sidi Salem-Wakar sandstones, offshore Nile Delta, Egypt. Journal of African Earth Sciences, 110: 160-175.
Nabway, B. S., & Kassab, M. A (2014) Porosity-reducing and porosity-enhancing diagenetic factors for some carbonate microfacies: a guide for petrophysical facies discrimination. Arabian Journal of Geosciences, 7 (11): 4523-4539.
Nosrati, A., Kadkhodaie, A.,  Amini, A.,  Chehrazi, A.,  Mehdipour, V.,  Moslemnezhad, T (2019) Reservoir properties distribution in the framework of sequence stratigraphic units: A case study from the Kangan Formation, Iranian offshore gas field, the Persian Gulf basin. Journal of Natural Gas Science and Engineering, 65: 1-15.
Nosrati, A., Kadkhodaie, A., Amini, A. H., Mehdipour, V., Moslemnezhad, T (2019) Reservoir properties distribution in the framework of sequence stratigraphic units: A case study from the Kangan Formation, Iranian offshore gas field, the Persian Gulf basin. Journal of Natural Gas Science and Engineering, 65: 1-15. Elsevier press.
Orodu, O. D., Tang, Z., & Fei, Q (2009) Hydraulic (flow) unit determination and permeability prediction: a case study of block Shen-95, Liaohe Oilfield, North-East China. Journal of Applied Sciences, 9 (10): 1801–1816.
Paterson, Ms (1983) The equivalent channel model for the permeability and resistivity in fluid saturated rock: A re-appraisal. Mechanics of Minerals, 2 (4): 345-52.
Perez, H. H., Datta-Gupta, A. and Mishra, S (2005) The role of electrofacies, lithofacies, and hydraulic flow units in permeability predictionfrom well logs: a comparative analysis using classification trees. SPE Paper 84301.
Rahimpour-Bonab, H., Asadi-Eskandar, A., Sonei A (2014) Controls of Permian-Triassic Boundary over Reservoir Characteristics of South Pars Gas Field, Persian Gulf, Geological Journal, 44: 341–364, 2009.
Rahimpour-Bonab, H., Esrafili-Dizaji, B., Tavakoli, V (2010) Dolomitization and anhydrite precipitation in Permo-Triassic carbonates at the South Pars gas Field, Offshore Iran: controls on reservoir quality. J. Pet. Geol, 33: 43–66.
Riazi, Z (2018) Application of integrated rock typing and flow units’ identification methods for an Iranian carbonate reservoir. Journal of petroleum science and engineering, 160: 483-497.
Riazi, Z (2017) Application of integrated rock typing and flow units’ identification methods for an Iranian carbonate reservoir, Journal of Petroleum Science and Engineering.
Sfidari, E., Kadkhodaie, A., Ahmadi, B., Ahmadi, B., Faraji, M. A (2018) Prediction of pore facies using GMDH-type neural networks: A case study from the South Pars gas field, Persian Gulf basin. Geopersia, 8 (1): 43-60. University of Tehran Press.
Sharland P. R., Archer R., Casey D. M., Davies R. B., Hall S. H., Heward A. P., Horbury A. D. and Simmons M. D (2001) Arabian plate sequence stratigraphy, Geo-Arabia Special Publication, p. 371.
Stinco, L. P (2006) Core and log data integration; the key for determining electrofacies. In SPWLA 47th Annual Logging Symposium 7.
Szabo F. and A. Kheradpir (1978) Permian and Triassic stratigraphy, Zagros Basin, south-west Iran. J. of Petr. Geol, 1(2): 57–82.
Teh, W. J., Willhite, G. P., & Doveton, J. H (2012) Improved reservoir characterization using petrophysical classifiers within electro facies. Society of Petroleum Engineers 154341-PP 19.
Tucker, M. E (1993) Carbonate Diagenesis and sequence stratigraphy. In: Wright, V. P., (Ed), Sedimentary review/1, Blackwell. Scientific Publication, p. 51-72.
Walsh, J. B., Brace, W. F (1984) The effect of pressure on porosity and the transport properties of rock. DOI: 10.1029/ JB089iB11p09425.
Wilson J. L (1975) Carbonate Facies in Geologic History, Springer-Verlag, New York, p. 471.
Winland, H., D (1976) Evaluation of gas slippage and pore aperture size in carbonate and sandstone reservoirs: Amoco Production Company Report F76-G-5, 25 p. (unpublished).
Zeigler, M. A (2001) Late Permian to Holocene paleofacies evolution of the Arabian plate and its hydrocarbon occurrences: Geoarabia, Gulf Petrolink, Bahrain, 6 (3): 445 – 504.