ریخت‌شناسی، ژئوشیمی و پیدایش تراورتن های وابسته به گسل در تاقدیس آران، آوج، جنوب استان قزوین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه بوعلی‌سینا، همدان

2 دانش‌آموخته دکترا، گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه بوعلی‌سینا، همدان

3 دانش‌آموخته کارشناسی‌ارشد، گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه بوعلی‌سینا، همدان

چکیده

نهشته تراورتنی بی‌آب و پل­اروان در محل تاقدیس آران، شمال شهرستان آوج و در جنوب استان قزوین قرار دارند. یک برش از توده تراورتنی در حال ساخت پل­اروان و دو برش از تراورتن بی‌آب مورد بررسی قرار گرفت. ریخت‌شناسی نهشته‌ها در هر دو منطقه از نوع آبشاری بوده که تحت تاثیر گسل‌های منطقه قرار دارند. بر پایه ویژگی‌های ظاهری چهار لیتوتایپ لامینه‌ای، حباب پوشش‌دار، گیاهی و درختواره‌ای (دندریتی) در منطقه شناسایی شد. فابریک میکریتی با آلوکم‌های پلوئیدی مهم­ترین فابریک بوده و انحلال و سیمانی شدن از مهم­ترین فرایندهای دیاژنزی تراورتن در منطقه می‌باشد. بر پایه یافته‌های آزمایش XRD از 5 نمونه تراورتنی منطقه، کلسیت در منطقه بی‌آب، و کلسیت و آرگونیت در پل­اروان کانی اصلی تشکیل­دهنده می­باشند. کانی‌های آواری ایلیت، کلریت و هماتیت نیز به مقدار کمی مشاهده می‌شود که خاستگاه آن‌ها از لایه‌های میوسن بالایی و پلـیوسن موجود در زیر توده تراورتن مــی‌باشد. با تـوجه به یافته‌های ICP-OES از 16 نمونه تراورتنی، کلسیم دارای بیش­ترین غلظت و منیزیم، سدیم، آهن و استرانسیم به مقدار کمتر در نمونه‌های تراورتن وجود دارند. مقدار این عناصر در تراورتن پل­اروان بیش­تر از منطقه بی‌آب است و به حضور سیانوباکتری‌ها، فعال بودن چشمه تراورتن‌ساز و رسوب آراگونیت مرتبط است. یافته‌های هیدروژئوشیمی آب چشمه‌ها نشان از عبور آب چشمه از لایه‌های نمکی در منطقه و نهشته شدن کربنات کلسیم از آب شور می‌باشد. گسل‌ها و شکستگی‌ها نقش مهمی در نفوذ آب به اعماق بیش­تر و تعامل آب با لایه‌های زیرزمینی منطقه ایفا می‌کنند. تیپ آب هر دو چشمه از نوع کلرورکلسیک می‌باشد، این موضوع اختلاط آب‌های بی­کربناته و آب­شور و تبادل کاتیونی معکوس بین آب‌های شور و کربنات سنگ‌های اطراف را نشان می‌دهد. هدف این پژوهش مقایسه نهشته تراورتنی بی‌آب و پل­اروان در دو سوی تاقدیس آران و نقش محیط­رسوبی در تعیین ویژگی‌های نهشته تراورتنی می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Morphology, geochemistry and genesis of fault-related travertines in the Aran Anticline (Avaj area), Qazvin Province, NW Iran

نویسندگان [English]

  • B. Rafie 1
  • H. Mohseni 1
  • S. Rahmani 2
  • S. Ghazanfari 3
چکیده [English]

Biab travertine and the Pole-Arvan travertine deposits are located in anticline Aran, north of Avaj city and in the south of Qazvin Province. One section of the Pole-Arvan travertine the forming quarry body and two sections of the Biab travertine were examined. The deposits morphologically are cascading in both regions, which is affected by faults in the region.  According to the physical characteristics, four lithotypes have been identified, including laminar, coated bubbles, vegetative and dendritic. Micritic fabric with Peloidal allochems has been the most important fabric, and also dissolution and cementation are among the most important diagenetic processes in the region's travertine. Based on the results of XRD analysis, calcite in Biab region, and calcite and aragonite in the Pole-Arvan are the main minerals. It also contains small amounts of illite, chlorite, and hematite minerals, which are originated of layers of upper Miocene and Pliocene under travertine. According to the results of ICP-OES analysis, there is the highest concentration of calcium and lower amounts of magnesium, sodium, iron and strontium in travertine samples. The amount of these elements in the Pole-Arvan travertine is higher than in the Biab region and is related to the presence of cyanobacteria, the activation of the travertine springs and the deposition of aragonite. The hydrogeochemical results of this water indicate the passage of spring water through the salt layers of the region and the deposition of travertine from saline water. The water type is both Chlorocalcite, which is the result of a mixture of bicarbonate and salt water, reverse cation exchange between saline water and carbonate surrounding rocks.

کلیدواژه‌ها [English]

  • travertine
  • lithotypes
  • hydrogeochemy
  • Avaj region
  • Qazvin Province
  احمدی­قمی، ف.، رفیعی، ب.، صدر، ا. ح (1397) بازنگری سازند قرمز بالایی به سن میوسن در منطقه آوج-آبگرم، غرب ایران. مجله رسوب‌شناسی کاربردی. دوره 6. شماره 12. ص 61-40.
خدابخش، س.، رحمانی، س.، محسنی، ح.، کاظمی، ش.، قائمی، ع (1391) پتروگرافی و ژئوشیمی تراورتن‌های کواترنری در برش‌هایی از شمال و غرب ایران. مجله رخساره‌های رسوبی. دوره 6. شماره 1. ص 48-31.
غضنفری، پ.، طاهری، م (1394) ریخت­شناسی و ویژگی‌های سنگ‌شناسی تراورتن آوج، قزوین. نوزدهمین همایش سالانه انجمن زمین­شناسی ایران و نهمین همایش ملی زمین­شناسی. دانشگاه پیام نور، تهران.
قبادی، م. ح.، طالب بیدختی، ع.، مومنی، ع. ا (1390) نقش لیتولوژی و ساختارهای تکتونیکی در گسترش کارست، تغییر آبدهی و کیفیت چشمه‌های کارستی منطقه آبگرم قزوین. مجله انجمن زمین‌شناسی مهندسی ایران. جلد سوم. شماره 3 و 4، ص 12-1.
Altunel, E (2005) Travertines: neotectonic indicators. In: Ozkul M, Yagiz S, Jones B (eds) Travertine, Proceedings of 1st international symposium on travertine, Denizli-TurkeyKozan Ofset, Ankara. 120–127.
Apello, C.A., Postma, D. 2005. Geochemistry, Groundwater and Pollution, 2nd Edition, A.A. Balkema Publishers, Amsterdam, the Netherlands, 647 p.
Bolourchi, M.H. 1979. Explantory text of the Kabudar Ahang quardrangle map, 1:250000, Geol. Surv. Iran, Rep. No. D5.
Brogi, A., Capezzuoli, E. 2009. Travertine deposition and faulting: the fault-related travertine fissure-ridge at Terme S. Giovanni, Rapolano Terme (Italy). Int J Earth Sci Geol Rundsch 98: 931–947.
Carpenter, S.J., Lohmann, K.C. 1992. Sr/Mg ratios of modern marine calcite: empirical indicators of ocean chemistry and precipitation rate. Geochim. Cosmochim. Acta, 56: 1817-1849.
Carver, R.E. 1971. Procedures in Sedimentary Petrology. New York, Wiley, 653 p.
Casanova, J., Bodénan, F., Négrel. P., Azaroual, M. 1999. Microbial control on the precipitation of modern ferrihydrite and carbonate deposits from the Ce´zallier hydrothermal springs (Massif Central, France). Sedimentary Geology 126: 125–145.
Chafetz, H., Folk, R. 1984. Travertines: depositional morphology and the bacterially constructed constituents. J. Sediment. Pet. 54 (1): 289-316.
Cipriani, N., Malesani, P., Vannucci, S. 1977. Travertine dell’Italia central. Boll. Serv. Geol. Ital., 98: 85-115.
Claes, H., Soete, J., Van Noten, K., El Desouky, H., Erthal, M.M., Vanhaecke, F., Özkul, M., Swennen, R. 2015. Sedimentology, three-dimensional geobody reconstruction and carbon dioxide origin of Pleistocene travertine deposits in the Ballık area (south-west Turkey). Sedimentology 62: 1408–1445.
Claes, H., Erthal, M.M., Soete, J., Özkul, M., Swennen, R. 2017. Shrub and pore type classification: Petrography of travertine shrubs from the Ballık-Belevi area (Denizli, SW Turkey). Quaternary International xxx: 1-17.
Cloutier, V., Lefebvre, R., Therrien, R., Savard, M.M. 2008. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology 353(3): 294-313.
Datta, P.S., Tyagi, S.K. 1996. Major ion chemistry of groundwater in Delhi area: Chemical weathering processes and groundwater regime. Journal of the Geological Society of India, 47: 179–188.
Dominguez-Villar, D., Vázquez‐Navarro, J.A., Krklec, K. 2017. The role of gypsum and/or dolomite dissolution in tufa precipitation: lessons from the hydrochemistry of a carbonate–sulphate karst system. Earth surface processes and landforms. Volume 42, Issue 2: 245-258.
El Desouky, H. Soete, J. Claes, H. Özkul, M. Vanhaecke, F. Swennen, R. 2015. Novel applications of fluid inclusions and isotope geochemistry in unravelling the genesis of fossil travertine systems. Sedimentology, 62: 27–56.
Environmental Protection Agency (EPA). 2001. Parameters of Water Quality: Interpretation and Standards, Ireland, 133 p.
Erthal, M.M., Capezzuoli, E., Macini, A., Claes, H., Soete, J., Swennen, R. 2017. Shrub morpho-types as indicator for the water flow energy - Tivoli travertine case (Central Italy). Sedimentary Geology.347: 79-99.
Ford, T.D., Pedley, H.M. 1996. A review of tufa and travertine deposits of the world. Earth-Science Reviews, 41: 117-175.
Garrels R.M., Mackenzie F.T. 1971. Evolution of Sedimentary Rocks. 1st. Ed. Norton, New York, xvi, 397 p.
Gunay, G. 2006. Hydrology and hydrogeology of Sakaryabasi Karstic springs, Cifteler, Turkey. Environ Geology 51: 229-240.
Guo, L., Riding, R. 1998. Hot-spring travertine facies and sequences, late Pleistocene, Rapolano Terme, Italy. Sedimentology 45:163–180.
Hancock, P.L., Chalmers, R.M.L., Altunel, E.C., Akir, Z. 1999. Travitonics: using travertines in active fault studies. J Struct Geol 21:903–916.
Hem, J.D. 1970. Study and interpretation of the chemical characteristics natural water. U.S Geological Survey Water Supply Paper, 1473.
Hounslow, A. 1995. Water quality data: analysis and interpretation, CRC press. 416 p.
Janssen, A., Swennen, R., Podoor, N., Keppens, E. 1999. Biological and diagenetic influence in recent and fossil tufa from Belgium. Sed. Geol., 126: 74–95.
Jones, B., Renaut, R.W. 2010. Impact of Seasonal Changes on the Formation and Accumulation of Soft Siliceous Sediments on the Discharge Apron of Geysir, Iceland. Journal of Sedimentary Research 80 (1): 17-35.
Kitano, Y. 1963. Geochemistry of calcareous deposits found in hot springs. J. Earth Sci. Nagoya Univ., 11: 68–100.
Marie, A., Vengosh A. 2001. Sources of Salinity in Ground Water from Jericho Area, Jordan Valley. Ground Water, 39: 240-248.
Mazor, E. 2004. Chemical and Isotopic Groundwater Hydrology, Marcel Dekker Incorpotation, New York, 470 p.
Pedley, H.M. 1990. Classification and environmental models of cool freshwater tufas. Sedim. Geol., 68: 143–154.
Pentecost, A. 1993. British travertines: a review. Proc. Geol. Ass., 104: 23–39.
Pentecost, A. 1995. The Quaternary travertine deposits of Europe and Asia Minor, Quaternary Sciences Review, 14: 1005-1028.
Pentecost, A. 2005. Travertine. Springer-Verlage Amsterdam, Netherland, 445 p.
Pentecost, A., Viles, H.A. 1994. A review and reassessment of travertine classification. Geogr. Phys. Quaternary, 48: 305-314.
Piper, A.M. 1944. A graphical interpretation of water analysis. Transactions of the American Geophysical Union, 25(6): 914 -928.
Ranjbaran, M., Rahmani Javanmard, S., Sotohian, F. 2019. Petrography and geochemistry of Quaternary travertines in the Ab-e Ask region, Mazandaran Province- Iran. Geopersia 9 (2): 351-365.
Sant’Anna, L.G., Riccomini, C., Rodrigues-Francisco, B.H., Sial, A.N., Carvalho, M.D., Moura, C.A.V. 2004. The Paleocene travertine system of the Itaboraı´ basin, Southeastern Brazil. Journal of South American Earth Sciences 18: 11–25.
Stocklin, J. 1968. Stractural history and tectonics of Iran. A review A.A.P.G. Bulletin, 52: 1221-1258.
Subba Rao, N. 2008. Factors controlling the salinity in groundwater in parts of Guntur district, Andhra Pradesh, India. Environmental Monitoring and Assessment, 138: 327 -341.
Temiz, U., Savas, F. 2015. Relationship between Akhüyük fissure ridge travertines and active tectonics: their neotecteonic significance (Ereğli-Konya, Central Anatolia). Arab J Geosci 8: 2383–2392.
Todd, D. K., Mays, L.W. 2004. Groundwater Hydrology, John Wiley & Sons, United States of America, 537 p.
Toker, E., Sezgül Kayseri-Özer, M., Özkul, M., Kele, S. 2015. Depositional system and palaeoclimatic interpretations of Middle to Late Pleistocene travertines: Kocabas, Denizli, south-west Turkey. Sedimentology 62: 1360–1383.
Veizer, J. 1983. Trace elements and isotopes in sedimentary carbonates. Rev. in Mineral., 11: 265-300.
Weiner, R. E. 2007. Applications of Environmental Aquatic Chemistry: A Practical Guide, CRC Press, Taylor and Francis Group, United States of America, 360 p.