علل تولید گاز متان و دی اکسیدکربن در تونل انتقال آب نوسود- استان کرمانشاه با استفاده از ارزیابی های ژئوشیمیایی

نویسندگان

1 دانشیار گروه زمین شناسی، دانشکده علوم پایه، دانشگاه بوعلی سینا، همدان

2 دانشیار گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه بوعلی‌سینا، همدان

3 دانشجوی دکترا رسوب‌شناسی و سنگ‌شناسی رسوبی، دانشگاه بوعلی‌سینا، همدان، کارشناس آزمایشگاه مرکزی دانشگاه لرستان، خرم‌آباد، ایران

4 دانشجوی دکترا رسوب‌شناسی و سنگ‌شناسی رسوبی، دانشگاه بوعلی‌سینا، همدان

چکیده

    
سازند گرو (آپتین - سنومانین) یکی از سازندهای مولد هیدروکربور در حوضه­ی رسوبی زاگرس به شمار می­رود. در این پژوهش تعداد 14 نمونه از سازند گرو در مسیر تونل انتقال آب نوسود واقع در شمال­باختر کرمانشاه برداشت گردید. نمونه­ها توسط دستگاه راک- ایول 3 مورد آنالیز و بررسی قرار گرفتند. بر پایه مطالعات انجام شده، کروژن غالب سازند گرو تیپ III تشخیص داده شد. سازند گرو در ناحیه مورد مطالعه با توجه به مقادیر Tmax دارای بلوغ حرارتی می­باشد. مقادیر HI در مقابل TOC بیانگر رخساره آلی CD و معرف محیط اکسیدان با منشأ مواد آلی گیاهی برای این سازند در منطقه فوق می­باشد. از لحاظ پتانسیل ژنتیکی این سازند یک سنگ منشأ ضعیف تا نسبتاً خوب بوده ولی از لحاظ توان هیدروکربن­زایی در رتبه ضعیف قرار می­گیرد. انعکاس ویترینیت اکثر نمونه­های سازند گرو بیش­تر از 3/1 بوده که بیانگر وجود سنگ منشأیی در مرحله تولید گاز می­باشد که با Tmax بیش از 440 درجه سانتی­گراد تایید می­شود. هم­چنین، مدل تاریخچه حرارتی سازند گرو در منطقه مورد مطالعه بیانگر ورود این سازند به محدوده کاتاژنز از زمان پالئوژن است و در اواخر نئوژن به بلوغ دمائی بالایی رسیده است. متان و دی­اکسید­کربن وارد شده به داخل تونل با غلظت بیش از 870 پی­پی­ام را می­توان به زایش هیدروکربن­های گازی با توجه به نتایج حاصل از مدلسازی حرارتی نسبت داد.

کلیدواژه‌ها


عنوان مقاله [English]

Causes of methane and carbon dioxide generation in the Nosud water-transfer tunnel, Kermanshah Province, using geochemical assessments

نویسندگان [English]

  • B. Rafiei 1
  • H. Mohseni 2
  • M. Sedaghatnia 3
  • H. Moradi Baghchemisheh 4
1
2
3
4
چکیده [English]

The Garau formation (Apthian - Cenomanian) is one of the hydrocarbon-generating formations in the Zagros basin. Investing hydrocarbon potential of the Garau Fm., 14 samples were taken through the Nosoud water-transfer tunnel, NW Kermanshah. The samples were analyzed by Rock- Eval 3 pyrolysis method. The results show that kerogen type III is the most abundant in the Garau Fm. According to the Tmax, and organic matter results, this formation is thermally matured in the study area. The HI vs TOC values indicate a CD organic facies representing an oxidizing environment of plant organic origin in this formation at the study area. In terms of genetic potential, the Garau Fm. is a poor to relatively good source rock, but its hydrocarbon potential ranks poor. The vitrinite reflectance is more than 1.3 in the most samples, which indicates gas production stage that is also confirmed by Tmax more than 440 C°. Furthermore, the thermal history model of the Garau Fm. in the study area suggests this formation entered to catagenetic stage in Paleogene and reached to high thermal maturity in late Neogene. The existing methane and carbon dioxide in the tunnel with a concentration of more than 870 ppm can be attributed to the generation of gaseous hydrocarbons according to the results of thermal modeling.

کلیدواژه‌ها [English]

  • Garau formation
  • Rock eval pyrolysis
  • Hydrocarbon potential
  • Kermanshah
رفیعی، ب.، محسنی، ح.، اربابی، م.، بیاتی، م (1392) ژئوشیمی آلی، بلوغ حرارتی و پتانسیل هیدروکربن­زایی سازند گورپی، ازگله، شـمال­باختر کرمانشاه. نشریه رسوب­شناسی کاربردی، دوره 1، شماره 2، ص 37-29.
مطیعی، ه (1374) زمین­شناسی نفت زاگرس، جلد 1 و 2، سازمان زمـین­شناسی کـشور، طـرح تـدوین کتــاب زمین­شناسی ایران. 850 ص.
موری، ش.، مغفوری­مقدم، الف.، رفیعی، ب.، صداقت­نیا، م (1398) ارزیابی ژئوشیمی آلی نهشته­های سازند گرو با استفاده از داده­های حاصل از پیرولیز راک- اول در مناطق باختر خرم­آباد و شـمال­باختر کـرمـانـشاه، نـشـریه رسوب­شناسی کاربردی، دوره 7، شماره 13،ص 101-94.
Ala, M. A., Kinghorn, R. R. F. and Rahman, M (1980) Organic geochemistry and source rock characteristics of the Zagros petroleum province, Southwest of Iran Petroleum Geology, 3: 61-86.
Ashkan, S. A. M. and Amir Bakhtiar, H (2010) Geochemical study of Asmari and Khami reservoir gases and its correlation with source rocks in Pazanan field, south west of Iran: 14th Int. Oil, Gas and Petrochemical Congress (in Persian).
Barker, C (1996) Thermal modeling of petroleum generation: theory and application: Elsevier Develomments in Petroleum Science, 45: 512.
Behar, F., Beaumont, V., and Penteado, De. B (2001) Rock- Eval technology: performances and developments: Oil and Gas Science and Technology- Rev. IFP, 56(2): 111-134. 
Bordenave, M. L (1993) Applied Petroleum Geochemistry. Editions Technip, Paris, 524 p.
Bordenave, M. L., and Burwood., R (1990) Source rock distribution and maturation in the Zagros Orogenic Belt: Provenance of Asmari and Bangestan reservoir oil accumulations, Organic Geochemistry, 16: 366-387.
Bordenave, M. L., and Huc, A. Y (1995) The Cretaceous source rock in the Zagros Foothills of Iran: Reve De Institut Francais Du Petrol, 50: 727-754.
Dahl, B., Bojesten-Keoford, J., Holm, A., Justwan, H., Rasmussen, E., and Thomsen, E (2004) A new approach to interpreting Rock-Eval S2 and TOC data for kerogen quality assessment. Organic Geochemistry, 35(11-12): 1461-1477.
Demasion, G. J., and Huizinga, B. J (1991) Genetic classification of the petroleum system. AAPG. Bulletin, 75: 1624-1643.
Espitalie, J., Deroo, G., Marquis, F (1985) La pyrolysis Rock-Eval at ses applications Revue Institue France-aisdu Petrol, part I, 40: 563-587, part II, 40: 755-784(in French).
Ezampanah, A., Sadeghi, A., Adabi, M. H., and Jamali, A. M (2012) Biostratigraphy of the Garau Formation in Naft well subsurface stratigraphic section, South Kermanshah. Journal of Stratigraphy and Sedimentology Researchers, part II, 47: 69-82.
Ghasemi-Nejad, E., Head, A. M., Naderi, M (2009) Palynology and petroleum potential of the Kazhdumi Formation (Cretaceous: Albian–Cenomanian) in the South Pars field, northern Persian Gulf, Marine and Petroleum Geology. Marine and Petroleum Geology, 26: 805–816.
Hantschel, T., and Kauerauf, A (2009) Fundementals of Basin and Petroleum Systems Modeling: Springer – Verlag, 425 p.
Haq, B. U (2014) Cretaceous eustasy revisited. Global and Planetary Change, 113: 44–58.
Hart, M. B (1990) Cretaceous sea level changes and global eustatic curves; evidence from SW England. Proceedings of the Ussher Society, 7: 268-272.
Heydari, E (2008) Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran. Tectonophysics, 451: 56–70.
Hunt, J. M (1996) Petrpleum geochemistry and geology. W.H. Freeman and Company, New York, 743 p.
Jones, R. W (1987) Organic facies. In: Brooks, J., and Welte, D., (Eds). Advances in petroleum geochemistry 2. Academian Press, London, p. 1-9.
Katz, B. J (1983) Limitation of Rock-Eval pyrolysis from typing organic matter. Organic Geochemistry, 4: 195-199.
Kobrae, M., Rabanni, A., Taati, F (2017) Source rock characteristics of the Early Cretaceous Garau and Gadvan formations in the western Zagros Basin–southwest Iran. J Petrol. Explor. Prod. Technol., 7: 1051–1070.
Koop, W. J (1977) Basement depth map: Oil Service Company of Iran, Drawing No.32661.
Koop, W. J., Orbell, G (1977) Regional chronostratigraphic thickness and facies distribution map of SW Iran Area (Permian and younger): Oil Service Company of Iran, Geological Report No.1269 (unpub).
Kotorba, M. J., Wieclaw, D., Kosakowski, P., Zacharski, J., and Kowalski, A(2003) Evaluation of source rock and petroleum potential of middle Jurassic strata in the south-eastern part of Poland, Prezeglad. Geologi Czny, 51: 1031-1040.
Langford, F. F., Blanc- Valleron, M. M (1990) Interpreting Rock- Eval pyrolysis data using of pyrolylizable hydrocarbons vs. total organic carbon: AAPG. Bull., 74 (6): 804-779.
MacLeod, J. H (1970) Kermanshah geological compilation map: Iranian Oil Operating Companies, scale 1:100,000, sheet number 20812 W.
Mashhadi, Z. S., Rabbani, A. R (2015) Organic geochemistry of crude oils and Cretaceous source rock in the Iranian sector of the Persian Gulf; an oil–oil and oil–source rock correlation study. Int. J. Coal Geol., 146: 118–144.
Maurer, F., van Buchem, F. S. P., Eberli, G. P., Pierson, B (2013) Late Aptian long-lived glacio-eustatic lowstand recorded on the Arabian Plate. Terra Nova, 25: 87–94 http://dx.doi.org/ 10.1111/ter.12009.
Murris, R. J (1980) Middle East: stratigraphic evolution and oil habitat. AAPG Bulletin, 4: 597-618.
Navidtalab, A., Rahimpor Bonab, H., Nazari Badii, A., Safari, M (2014) Challenges in deep basin sequence stratigraphy: a case study from the Early–Middle Cretaceous of SW Zagros. Springer-Verlag Berlin Heidelberg, DOI 10.1007/s10347-013-0377-x
Orbell, G (1977) geothermal gradient map: Oil Service Company of Iran. Drawing No. 327091.
Pasley, M., Gregory, W., and Hart, G. F (1991) Organic matter variations in transsgressive and regressive shale. Organic Geochemistry, 17(4): 483-509.
Peters, K. E., and Cassa, M. R (1994) Applied source rock geochemistry. In: Magoon, L. B., Dow, W.G. (Eds.), the petroleum system- From source to trap: American Association of Petroleum Geologists Memoir, 60: 93-120.
Peters, K. E (1986) Guidelines for evaluating petroleum source rocks using programmed pyrolysis. Am. Assoc. Petrol. Geol. Bull., 70: 318-329.
Sajadi, F (1976) Well completion report Pazanan – 17, Oil Service Company of Iran.
Sepehr, M., and Cosgrove, J. W (2004) Stractural framework of the Zagros Fold-Thrust Belt, Iran: Marine and Petroleum Geology, 21: 829-843.
Sharland, P. R., Archer, R., Casey, D. M., Davies, R. B., Hall, S. H., Heward, A. P., Horbury, A. D., Simmon, M. D (2001) Arabian Plate sequence stratigraphy. GeoArabia Special Publication, Oriental Press, Manama Bahrain. 371 p.
Tissot, B. P., Durand, B., Espitalie, J., and Combaz, A (1974) Influence of nature and diagenesis of organic matter information of petroleum, AAPG Bulletien, 58: 499-506.
Vincent, B., van Buchem, F. S. P., Bulot, L. G., Immenhauser, A., Caron, M., Baghbani, D., Huc, A. Y (2010) Carbon-isotope stratigraphy, biostratigraphy and organic matter distribution in the Aptian–Lower Albian successions of southwest Iran (Dariyan and Kazhdumi formations). In: van Buchem FSP, Al-Husseini MI, Maurer F, Droste HJ (Eds.) Barremian–Aptian stratigraphy and hydrocarbon habitat of the eastern Arabian Plate, GeoArabia Special Publications 4: 139–197, Gulf PetroLink, Bahrain.
Zigler, M. A (2001) Late Permian to Holocene Paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia, 6(3): 445-504.