بررسی منشا چشمه شوراب و مکانیسم تشکیل نهشته های میکروبی تراورتن- توفا در گردنه گدوک (جاده فیروزکوه) ایران

نویسندگان

1 استادیار دانشکده زمین‌شناسی، پردیس علوم، دانشگاه تهران، تهران

2 دانشجوی کارشناسی‌ارشد، دانشکده زمین‌شناسی، پردیس علوم، دانشگاه تهران، تهران

چکیده

چشمه تراورتن­ساز شوراب در فاصله‌ی 140 کیلومتری شرق تهران و در ابتدای گردنه گدوک در مرز استان‌های تهران و مازندران قراردارد. این چشمه از شکستگی‌ها و زهکشی‌های موجود از سازند باروت از تونل قطار منشأ می‌گیرد. با توجه به زمان تشکیل نهشته‌ها، دو گروه تفکیک گردید: گروه اول نهشته‌های که امروزه در حال تشکیل و شکل‌گیری هستند و اکثراً دارای رنگ‌های متنوع بوده و گروه دوم نهشته‌های قدیمی و فسیل ‌شده که عمدتاً در مجاورت مسیر راه‌آهن و در کنار نهشته‌های جدید در غرب روستا قرار دارد و بیش­تر کرم‌رنگ می‌باشد. سن تشکیل این نهشته‌های جدید کمتر از صدسال می‌باشد. مورفولوژی و نهشته‌های رسوبی به فرم‌های آبشاری و لایه‌ای می‌باشد. براساس ویژگی‌های ظاهری دو لیتوتایپ از نوع 1- تراورتن لامینه‌ای (Laminated travertine) و 2- توفای آهکی یا فریم­ستون فیتوهرمی (Calcareous Tufa or Framestone phytoherm) شناسایی شد. نتایج پتروگرافی برش­های نازک میکروسکوپی منجر به شناسایی  چهار نوع میکروفاسیس شامل: 1- میکروفاسیس باندستون رفتی: Microfacies raft boundstone؛ 2- میکروفاسیس جلبکی؛ 3- میکروفاسیس باندستون لامینه Microfacies Crystalline crusts و 4- میکروفاسیس باندستون بوته‌ای گردید. انحلال و سیمانی شدن از مهم­ترین فرآیندهای دیاژنزی توفا و تراورتن در فاسیس­های کربناته منطقه می‌باشد. بر اساس غلظت یون‌های محلول، تیپ آب چشمه شوراب تقریباً خنثی تا کمی قلیایی و از نوع کلرورسدیک می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The factors influencing the creation of Shurab spring and distribution of microbial travertine and tufa deposits in Gadook Gorge -Firuzkuh, Iran

نویسندگان [English]

  • M. Ranjaran 1
  • N. Bashiri 2
  • M. Hosseinzadeh 2
چکیده [English]

Shurab travertine spring is located 140 km the east of Tehran and at the beginning of the Gadook Gorge on the border of Tehran and Mazandaran provinces. This spring originates from the fractures and drainage of the Barut Formation in the train tunnel. The carbonate deposits are divided into two main categories: the first group of deposits that are forming at present time (active): and mostly of different colors such as red, yellow and orange, the second group of old (fossilized) deposits mainly adjacent to the railway line and are mostly cream-colored. The age of these deposits is less than 100 years old. The morphology of the carbonate deposits are layeres and Cascade form. Types of travertines and tufas based on morphology and environment in the stack include 1- waterfall travertine 2- travertine with layered morphology and 3- calcareous tufa or framestone phytoherm. Also, according to the petrographic results of four types of lithofacies, according to the characteristic morphologies on the ground scale and hand specimens in the travertine deposits of the saltwater travertine were identified which include: 1- lithofacies raft boundstone; 2- lithofacies algae; 3- lithofacies crystalline crusts and 4- lithofacies Bandstone shrubs. Dissolution and cementation are the most important diagenetic processes of tufa and travertine in the carbonate fascia of the region.  Hydrochemical data the water in Shurab spring is near neutral to slightly alkaline and of sodium chloride type.

کلیدواژه‌ها [English]

  • lithotype
  • Gadook Gorge
  • Shurab spring
  • travertine
  • tufa
  • Alborz
خدابخش، س.، رحمانی، س.، محسنی، ح.، کاظمی، ش.، قائمی، ع (1392) پتروگرافی و ژئوشیمی تراورتن­های کواترنری در برش‌هایی از شمال و غرب ایران. نشریه رخساره‌های رسوبی، 6(1)، ص 31-48.
خنشا، ج.، آموزگار، م.، ع.، رنجبران، م ( 1395) بررسی معدنی شدن زیستی در نهشته­های تراورتنی چشمه بادآب سورت، کیاسر، مازنداران. فصلنامه علمی- پژوهشی زیست­شناسی میکروارگانیسم­ها، 17(5)، ص 141-158.
دارابی، ف.، ارزانی، ن (1394) ویژگی‌های رسوبات تراورتن از نظر رخساره‌ها و ریزرخساره‌ها در چشمه آبگرم فعال امروزی و پلئیستوسن - هولوسن در منطقه ورتون، شمال اصفهان، مجموعه مقالات نوزدهمین همایش انجمن زمین‌شناسی ایران و نهمین همایش ملی زمین‌شناسی دانشگاه پیام نور، 755-762.
رحمانی جوانمرد، س.، طوطی، ف.، امیدیان، ص. و رنجبران، م (۱۳۹۰) منشأ تراورتن­های تیپ پشته- شکافی آب­اسک واقع ‌شده در جنوب­شرق آتشفشان دماوند بر اساس آنالیزهای ایزوتوپی SEM، XRD، δ13c و مطالعات میکروسکوپی، پانزدهمین همایش انجمن زمین‌شناسی ایران، تهران، انجمن زمین‌شناسی ایران، دانشگاه تربیت‌معلم.
رحمانی جوانمرد، س.، طوطی، ف.، امیدیان، ص.، و رنجبران، م (1391) کانی‌شناسی و ژنز تراورتن­های تیپ پشته‌ای- شکافی و رگه‌ای آب­اسک بر اساس آنالیزهای ایزوتوپی کربن و اکسیژن، نشریه زمین‌شناسی ایران، دوره 6، شماره 22، ص 61-51.
رفیعی، ب.، محسنی، ح.، رحمانی، س.، غضنفری، س (1399) ریخت­شناسی، ژئوشیمی و پیدایش تراورتن­های وابسته به گسل در تاقدیس آران، آوج، جنوب استان قزوین، نشریه رسوب­شناسی کاربردی، دوره 8، شماره 15، ص 94-116.
کیانپور، س.، محمودی­قرائی، م. ح.، امجدی، ص (1389) تفکیک پلی­مورف­های کربناتی آراگونیت و کلسیت با استفاده از تکنیک­های شیمیایی در آزمایشگاه. بیست و نهمین گردهمایی علوم زمین.
رنجبران، م (1390) مورفولوژی و پتروگرافی چشمه‌های تراورتن­ساز باداب سورت- شمال دامغان، ایران، نشریه یافته‌های نوین زمین‌شناسی کاربردی، دوره 5، شماره 9. ص 47-56.
روشنک، ر.، زراسوندی، ع، پورکاسب، ه.، مُر، ف (1396) بررسی تراورتن­های ارومیه- دختر شمالی و مقایسه آن­ها با تراورتن­های سنندج- سیرجان شمالی با استفاده از ایزوتوپ­های پایدارO 18و C13. سال بیست و هفتم، شماره 106، ص 143-152.
گلیج، ف.، محبوبی، ا.، خانه­باد، م.، موسوی­حرمی، ر (1396) رسوب‌شناسی و ژئوشیمی توفا و ارتباط آن‌ها با هیدروشیمی چشمه‌ها به همراه مثالی از توفای آبگرم کلات- شـرق حوضه کپـه­داغ، نـشریه پـژوهش‌های چینه­نگاری و رسوب‌شناسی، سال سی و سوم، شماره پیاپی  69، شماره چهارم، ص 1-20.
Altunel, E (2005) Travertines: neotectonic indicators. In: Ozkul M, Yagiz S, Jones B (eds) Travertine, Proceedings of 1st international symposium on travertine, Denizli-TurkeyKozan Ofset, Ankara. 120–127.
Altunel, E., Hancock, P. L (1993a) Morphology and structural setting of Quaternary travertines at Pamukkale, Turkey. Geological Journal, 28: 335 - 346.
Atabey, E (2002) The formation of fissure ridge type laminated travertine-tufa deposits microscopical characteristics and diagenesis, Kirsehir Central Anatolia. Bulletin of the Mineral Research and Exploration, 123–124: 59–65.
Brogi, A., Capezzuoli, E (2009) Travertine deposition and faulting: the fault-related travertine fissure-ridge at Terme S. Giovanni, Rapolano Terme (Italy). Int J Earth Sci Geol Rundsch, 98: 931–947.
Chafetz, H. S. Guidry, S. A (1999) Bacterial shrubs Crystal shrubs and ray-crystal crust bacterially induced vs. abiotic mineral precipitation. Sedimentary Geology, 126: 57–74.
Chafetz, H. S., and Folk, R. L (1984) Travertines: depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Petrology, 54: 289–316.
Claes, H., Soete, J., Van Noten, K., El Desouky, H., Erthal, M. M., Vanhaecke, F., Özkul, M., Swennen, R (2015) Sedimentology, three-dimensional geobody reconstruction and carbon dioxide origin of Pleistocene travertine deposits in the Ballık area (south-west Turkey). Sedimentology, 62: 1408–1445.
Drysdale, R. N (1999) The sedimentological significance of hydropsychid caddis-fly larvae (Order: Trichptera) in a travertine-depositing stream: Louie Creek, Northwest Queensland, Australia. Journal of Sedimentary Research, 69: 145–150.
Erthal, M. M., Capezzuoli, E., Macini, A., Claes, H., Soete, J., Swennen, R (2017) Shrub morpho-types as indicator for the water flow energy - Tivoli travertine case (Central Italy). Sedimentary Geology, 347: 79-99.
Ford, T. D., Pedley, H. M (1996) A review of tuff and travertine deposits of the world. Earth Science Review, 41: 117–175.
Freytet, P., Verrecchia, E. P (1999) Calcitic radial palisadic fabric in freshwater stromatolites: diagenetic and   recrystallized feature or physicochemical sinter crust? Sedimentary Geology, 126: 97–102
Gandin, A. and Capezzuoli, E (2008) Travertine versus calcareous tufa: distinctive petrologic features and stable isotopes signatures. Italian Journal of Quaternary Sciences, 21(1B): 125–136.
 Gobac, Ž. Ž., Posilović, H., Bermanec, V (2009) Identification og biogenetic calcite and aragonite using SEM. Geologica Croatica, 62(3): 201–206.
Gradzinski, M (2010) Factors controlling growth of modern tufa: results of a field experiment. In: Tufas and Speleothems: Unravelling the Microbial and Physical Controls (Eds H.M. Pedley and M. Rogerson), Geological Society London Special Publications, 336: 143–191.
Gradziński, M., Wróblewski, W., Duliński , M., Hercman, H (2013) Earthquake affected development of a travertine ridge. Sedimentology, 61: 238–263.
Guo, L., Riding, R (1998) Hot-spring travertine facies and sequences, late Pleistocene, Rapolano Terme, Italy. Sedimentology, 45: 163–180.
Hancock, P. L., Chalmers, R. M. L., Altunel, E., Cakir, Z (1999) Travitonics: using travertines in active fault studies. Journal of Structural Geology, 21: 903–916.
Janssen, A. Swennen, R. Podoor, N., Keppens, E (1999) Biological and diagenetic influence in recent and fossil tufa deposits from Belgium. Sedimentary Geology, 126: 75-95.
Jones, B., Renaut, R. W (2010) Calcareous Spring Deposits in Continental Settings. In: Alonso-Zarza, A. M., Tarnner, L. H. (Eds), Carbonates in Continental settings. Facies, Environments and Processes. Elsevier, Amsterdam, 177-224.
Kano, A., Okumura, T., Takashima, C., Shiraishi, F (2019) Geomicrobiological Properties and Processes of Travertine. Springer Geology, 176.
Kitano, Y (1963) Geochemistry of calcareous deposits found in hot springs. Journal of Earth Science. Nagoya University, 11: 68-100
Koban, C. G, Schweigert, G (1993) Microbial origin of Teravertine fabrics. Two examples from southern Germany (Pleistocene Stuttgart Teravertines and Miocene Riedoschingr Teravertine). Facies, 29: 251-264.
Lohmann, K. C (1988) Application of carbon and oxygen isotopic techniques for unraveling the diagenetic history of carbonate seguences. In Allan, J. R. and Harris, P. M., eds., Stable Isotope, Trace Element, and Fluid Inclusion Workshop, Chevron Oil Field Research Co., unpublished report, 1-49.
Muir -Wood, R (1993) Neohydrotectonics. Zeitschrift ffir Geomorphologie, Supplementary, 94: 275-284.
Okumura, T., Takashima, C., Shiraishi, F., Akmaluddin, K. A (2012) Textural transition in an aragonite travertine formed under various flow conditions at Pancuran Pitu, Central Java, Indonesia. Sedimentary Geology, 265–266: 195–209.
Okumura, T., Takashima, C., Shiraishi, F., Nishida, S., Kano, A (2013) Processes forming daily lamination in a microbe-rich travertine under low flow condition at the Nagano-yu hot spring, southwestern Japan. Geomicrobiology Journal, 30: 910–927.
Okumura, T., Takashima, C., Shiraishi, F., Nishida, S., Yukimura, K., Naganuma, T., Koike, H., Arp, G., Kano, A (2011) Microbial processes forming daily lamination in an aragonite travertine, Nagano-yu hot spring, southwest Japan. Geomicrobiology Journal, 28: 135–148.

Pedley, H. M., Andrews, J., Ordonez, S., Gonzales-Martin, J. A., Garcia Del Cura, M. A., Taylor, D (1996) Does climate control the morphological fabric of freshwater carbonates? A comparative study of Holocene barrage tufas from Spain and Britain. Palaeogeography, Palaeoclimatology, Palaeoecology, 121: 239-257.

Pedley, H. M (1990) Classification and environmental models of cool freshwater tufas. Sedimentary Geology, 68: 143–154.
Pedley, M (2009) Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments. Sedimentology, 56(1): 221-246.
 Pentecost, A (1993) British travertines: a review. Proceedings of the Geologists' Association, 104: 23–39.
Pentecost, A (1995) The Quaternary travertine deposits of Europe and Asia Minor, Quaternary Sciences Review, 14: 1005-1028.
Pentecost, A (1995a) The Quaternary travertine deposits of Europe and Asia Minor. Quaternary Science Reviews, 14: 1005–1028.
Pentecost, A (1995b) The microbial ecology of some Italian hot-spring travertines. Microbios, 81: 45–58.
Pentecost, A (2005) Travertine. Springer-Verlage, Berline Heidelberg, Netherland, 445.
Pentecost, A. and Viles, H. A (1994) A review and reassessment of travertine classification. Geographie Physique et Quaternaire, 48: 305-314.
Pentecost, A., Viles, H (1994) A review and reassessment of travertine classification. Geographie physique et Quaternarie, 48: 305–314.
Piper, A. M (1944) A graphic procedure in the geochemical interpretation of water analysis. Trans. American Geophysical Union, 25 (6): 914-928.
Rahmani Javanmard, S., Toti, F., Omidian, S., Ranjbaran, M (2012a) Mineralogy and genesis of fissures hill and vein from Ab-e- Ask based on petrographic studies and carbon- oxygen isotope. Iranian Journal of Geology, 22: 51- 61. (in Persian with English abstract).
Rahmani Javanmard, S., Tutti, F., Omidian, S., and Ranjbaran, M (2012b) Mineralogy and stable isotope geochemistry of the Ab Ask travertines in Damavand geothermal field, Northeast Tehran, Iran. Central European Geology, 55: 187-212.
Ranjbaran, M (2011) Geomorphology and petrography of Badab-e Surt travertine springs north of Damghan, Iran. Journal of New Findings in Applied Geology, 9: 47-56.
Ranjbaran, M. Somayeh Rahmani Javanmard, S (2019) Petrography and Geochemistry of Quaternary travertines in the Ab-Ask region, Mazandaran Province- Iran. Geopersia, 9(2): 351.
Rollinson, H. R (1993) Using Geochemical Data, Longman Scientific and Technical, 420.
Roshanak, R., Mar, F., Keshavarzi, B., Omidian, S (2018) Petrography and Classification of Qorveh-Takab Travertines Based on Isotopic Analysis and SEM Images. Journal of Earth Knowledge Research , 111(1): 64-74.
Salamati, M. R (2018) Geological map of Firouzkuh, scale 1:250000, Geological Survey of Iran.
Shahbeig, A (1993) Mineral and thermal waters of Iran. Geological Survey of Iran. p. 397.
Sotohian. F., Ranjbaran, M (2015) Depositional system and facies analysis of travertine deposits: Badab-e Surt Spring Mazandaran, Iran. Arabian Journal of Geosciences, 8(7): 4939-4947.
Toker, E., Sezgül Kayseri-Özer, M., Özkul, M., Kele, S (2015) Depositional system and palaeoclimatic interpretations of Middle to Late Pleistocene travertines: Kocabas, Denizli, south-west Turkey. Sedimentology, 62: 1360–1383.
Uysal, T., Feng, Y., Zhao, J., Isik, V., Nuriel, P. Golding, S. D (2009) Hydrothermal CO2 degassing in seismically active zones during the late Quaternary: Chemical Geology, 265: 442-454.