ارزیابی ژئوشیمی آلی توالی کرتاسه‌ بالایی– پالئوژن (سازند گورپی) در برش پشته از ساختمان کبیرکوه

نویسندگان

1 دانشجوی دکترا، گروه حوضه‌های رسوبی و نفت، دانشکده علوم‌زمین، دانشگاه شهید بهشتی، تهران

2 دانشیار گروه حوضه‌های رسوبی و نفت، دانشکده علوم‌زمین، دانشگاه شهید بهشتی، تهران

3 استاد گروه حوضه‌های رسوبی و نفت، دانشکده علوم‌زمین، دانشگاه شهید بهشتی، تهران

4 مدیریت اکتشاف شرکت ملی نفت ایران، تهران

چکیده

قرارگیری سازند گورپی به سن کرتاسه‌پسین - پالئوژن در بین دو مخزن مهم بنگستان و آسماری نه تنها آن را به عنوان پوش­سنگ بلکه به عنوان سنگ­منشا نیز مطرح کرده است. هدف از انجام این مطالعه ارزیابی ژئوشیمی آلی سازند گورپی به عنوان سنگ­منشا احتمالی، شامل ارزیابی توان هیدروکربنی (کمیت)، نوع کروژن (کیفیت) و بلوغ حرارتی مواد آلی، در برش پشته از ساختمان کبیرکوه است. مقدار کل کربن آلی (TOC) در 31 نمونه مطالعه شده از رسوبات کرتاسه بالایی سازند گورپی 04/0 تا 67/1 (میانگین 32/0) و در 13 نمونه مطالعه شده بخش پالئوژن سازند گورپی 13/0 تا 33/0 (میانگین 22/0) درصد وزنی می­باشد. هم­چنین مقدار پارامتر S2 در  بخش کرتاسه بالایی 02/0 تا 66/6 (میانگین 87/0) و در بخش پالئوژن 03/0 تا 26/0 (میانگین 07/0) میلی­گرم هیدروکربن بر گرم سنگ می­باشد. این مقادیر بیانگر توان ضعیف تا مناسب برای سازند گورپی در بخش کرتاسه بالایی خود و توان ضعیف برای بخش پالئوژن در برش مورد مطالعه است. نمودار اندیس هیدروژن (HI) در برابر اندیس اکسیژن (OI) و نمودار S2 در برابر TOC نشان­دهنده آن است که توالی رسوبی کرتاسه بالایی به طور عمده دارای کروژن نوع II تا کروژن II/III بوده و توانایی زایش نفت/گاز را دارد. حال آنکه توالی رسوبی دانین عمدتاّ نبود توانایی تولید هیدروکربن است. هم­چنین رخساره‌های آلی تعیین شده برای توالی کرتاسه‌بالایی محدوده C تا D و برای توالی رسوبی دانین در محدوده BC و C را نشان می­دهد. نهایتا پارامترهای Tmax و PI بیانگر بلوغ نسبتاّ بالای سازندگورپی بوده و نشان­دهنده ورود آن به پنجره نفتی است.

کلیدواژه‌ها


عنوان مقاله [English]

Geochemical assessment of the Upper-Cretaceous- Paleogene succession (Gurpi Formation) in the Poshteh section of the Kabir-Kuh structure

نویسندگان [English]

  • A. Mobasheri 1
  • M. Hosseini-Barzi 2
  • A. Sadeghi 3
  • M. A. Kavoosi 4
1
2
3
4
چکیده [English]

The Gurpi Formation (late Cretaceous-Paleogene) has been considered as a cap rock and source rock because of its stratigraphic position between two important Bangestan and Asmari reservoirs. The purpose of this study is geochemical evaluation of the Gurpi Formation as a possible source rock at Poshteh section in Kabir-kuh structure, consist of hydrocarbon enrichment (quantity), kerogen type (quality) and thermal maturity of organic matter. The TOC content of 31 studied samples from the Upper Cretaceous deposits of Gurpi Formation ranges from 0.04 to 1.67 (average 0.32 wt.%) and 0.13 to 0.33 (average 0.22 wt.%) in13 studied samples from the Paleogene succession. Also, the S2 parameter varies between 0.02 to 6.66 (average 0.87 mgHC/gr rock) and 0.03 to 0.26 (average 0.07 mgHC/grRock) for the Upper Cretaceous and Paleogene successions respectively, which means poor to fair hydrocarbon potential for Upper Cretaceous and poor for Paleogene deposits in studied section. The HI/OI and the S2/TOC diagrams indicate that the Upper Cretaceous deposits are mainly composed of type II to II / III kerogen, related to their suboxic marine environment, and the ability of oil and gas generation. However, the Paleogene succession mostly lacks the ability to produce hydrocarbons. The determined organic facies for the Upper Cretaceous succession range C to D and for the Paleogene succession range BC and C. Maturity indicator parameters of PI and, Tmax reveals oil generation window for the Gurpi samples in the studied area.

کلیدواژه‌ها [English]

  • Kabir-kuh
  • Gurpi formation
  • Late Cretaceous-Paleogene
  • Hydrocarbon generation potential
  • Kerogen type
پاریاب، م. و کمالی، م. ر (1385) طیف­سنجی پرتو اورانیوم به منظور تعیین TOC سازندهای پابده و گورپی در یکی از میادین واقع در جنوب­غرب ایران، یازدهمین کنگره ملی مهندسی شیمی ایران تهران، دانشگاه تربیت مدرس.
صادقی، م.، کمالی، م. ر.، قوامی ریابی، ر.، و قربانی، ب (1393) ارزیابی ویژگی­های ژئوشیمیایی مواد آلی سازندهای پابده و گورپی میدان نفتی نصرت در جنوب­خاور خلیج­فارس با استفاده از پیرولیز راک‌ایول 6 و کروماتوگرافی گازی، فصلنامه علوم­زمین، زمستان 93، سال بیست و چهارم، شماره 94، ص 3- 17.
صفایی­فاروجی، م.، رحیم­پوربناب، ح.، قربانی، ب (1398) ارزیابی ژئوشیمیایی و توان هیدروکربن­زایی سازندهای پابده و گورپی در میدان نفتی گچساران، با استفاده از روش­های پیرولیز راک‌ایول و پتروگرافی مواد آلی، ماهنامه علمی اکتشاف و تولید نفت و گاز، شماره 156، ص 45-52.
قاضوی، س.، رضایی، س.، سحابی، ف. و معماریان، ح (1390) ارزیابی پتانسیل سنگ‌های منشأ هیدروکربوری احتمالی با استفاده از مطالعات ژئوشیمیایی در منطقه ازگله (باختر کرمانشاه)، نشریه مهندسی معدن، دور 8، شماره 11، ص 1- 11.
مقدسی، ع.، وزیری­مقدم، ح. و صیرفیان، ع (1397) سنگ چینه­نگاری، زیست­چینه­نگاری و طیف­سنجی پرتو گاما مرز کرتاسه – پالئوژن در برش چینه­شناسی سطحی و چاه اکتشافی در ناحیه فارس ساحلی، کمربند چین­خورده و رانده زاگرس، نشریه رسوب­شناسی کاربردی، دوره 5، شماره 10، ص 97- 126.
موسوی، م. ح.، کمالی، م. ر.، شایسته، م.، احمدی، ا. و کعبی مفرد، ا (1391) ژئوشیمی آلی سنگ­های منشاء کرتاسه بالایی (سازند گورپی) و پالئوژن (سازند پابده) در میدان نفتی پرسیاه، شمال­باختری ایذه، پژوهش­های چینه­نگاری و رسوب‌شناسی، سال بیست و هشتم، شماره پیاپی 49، شماره 4، ص 1- 24.
Alavi, M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American journal of science, 304(1), pp.1-20.
Berberian, M. and King, G.C.P (1981) Towards a paleogeography and tectonic evolution of Iran. Canadian journal of earth sciences, 18(2), pp.210-265.
Dembicki, H (2016) Practical petroleum geochemistry for exploration and production. Elsevier.
Espitalié, J (1986) Use of Tmax as a maturation index for different types of organic matter: comparison with vitrinite reflectance. Collection colloques et séminaires-Institutfrançais du pétrole, (44), pp.475-496.
Espitalié, J., Deroo, G. and Marquis, F (1985) La pyrolyse Rock-Eval et ses applications. Deuxièmepartie. Revue de l'Institutfrançais du Pétrole, 40(6), pp.755-784.
Fiet, Nicolas / Gorin, Georges E (2000) Gamma-ray spectrometry as a tool for stratigraphic correlations in the carbonate-dominated, organic-rich, pelagic Albian sediments in Central Italy, EclogaeGeologicae Helvetia, p. 175-181
Hassan, M., Husen, A., &Combaz, A (1976) Fundamentals of the differential gamma log interpretation technique. Transactions ofSPWLA 17 th Annual Logging Symposium, June 9-12, Paper H.
Hosseinzadeh R. 2013 Biostratigraphy and Micropaleontological Studies on the Surface Samples Collected from the Tang-e Holestem and Poshteh Stratigraphic Sections in Kabir-Kuh Anticline, Lurestan Province, Southwestern Iran, Paleontological note # 852, National Iranian Oil Company, Exploration Directorate, Department of Geological and Geochemical Studies and Researches.
Hosseiny, E., Rabbani, A.R. and Moallemi, S.A (2016) Source rock characterization of the Cretaceous Sarvak Formation in the eastern part of the Iranian sector of Persian Gulf. Organic Geochemistry, 99, pp.53-66.
Hunt, J.M (1996) Petroleum geochemistry and geology”, 2nd edition. W. H. Freeman and Company. 743pp.
James, G.A. and Wynd, J.G (1965) Stratigraphic nomenclature of Iranian oil consortium agreement area. AAPG bulletin, 49(12), pp.2182-2245.
Julian, L. Bessa (1995) High-Resolution Outcrop Gamma-Ray Spectrometry of the Lower Lias, Southern Britain, volume 1, Thesis presented to the University of Oxford for the Degree of Doctor of Philosophy, 208 P.
Kamali, M.R., Fathi, M.A. and Mohsenian, E (2006) Petroleum geochemistry JolantaK., Lidia D. (2016) Geological interpretation of spectral gamma ray (SGR) logging in selected boreholes, Oil and Gas Institute – National Research Institute, NAFTA-GAZ.
Jones, R. W (1987) Organic Facies”. In, J. Brooks and D. Welte (eds.), Advances in Petroleum and thermal modeling of Pabdeh Formation in Dezful Embayment.
Kobraei, M., Sadouni, J. and Rabbani, A.R (2019) Organic geochemical characteristics of Jurassic petroleum system in Abadan Plain and north Dezful zones of the Zagros basin, southwest Iran. Journal of Earth System Science, 128(3), p.50.
Lüning, S., Kolonic, S (2003) Uranium spectral gamma-ray response as a proxy for organic richness in black shales: Applicability and limitations. Journal of Petroleum Geology 26, 153–174.
Magoon, L.B (1988) The petroleum system- A classification scheme for research, resource assessment, and exploration, in Magoon, L.B. (eds.), Petroleum Systems of the United States; USGS Bulletin 1870, p. 2-15.
Mukhopadhyay, P.K., Wade, J.A. and Kruge, M.A (1995) Organic facies and maturation of Jurassic/Cretaceous rocks, and possibleoil-source rock correlation based on pyrolysis of asphaltenes, Scotian Basin, Canada. Organic Geochemistry, 22(1), pp.85-104.
Myers, K.J. & Wignail. P.B (1987) Understanding Jurassic organic-rich mudrocks - new concepts using gamma-ray spectrometry and paleoecology: example from The Kimmeridge Clay. Dorset and the Jet Rock of Yorkshire. In: Marine Clastic Sedimentology: New Developments and Concepts. (Ed. by. J.K. Legget & G.G. Ziti a). Graham & Trotman. London. 172- 189.
Opera, A., Alizadeh, B., Sarafdokht, H., Janbaz, M., Fouladvand, R. and Heidarifard, M.H (2013) Burial history reconstruction and thermal maturity modeling for the Middle Cretaceous–Early Miocene petroleum System, southern Dezful Embayment, SW Iran. International Journal of Coal Geology, 120, pp.1-14.
Pasley, M., Gregory, W., Hart, G.F (1991) Organic matter variations in trans-gressive and regressive shales. Org. Geochem, p. 483-509.
Peters, K.E (1986) Guidelines for evaluating Petroleum Source rocks using programmed pyrolysis. AAPG Bulletin.Vol. 84, pp 318-329.
Peters, K.E., Cassa, M.R (1994) Applied source rock geochemistry. in: Magoon, L.B., Dow, W.G., (eds.), The petroleum system from source to trap. AAPG memoir. Vol. 60, pp. 93-120.
Sepehr, M. and Cosgrove, J.W (2004) Structural framework of the Zagros fold–thrust belt, Iran. Marine and Petroleum geology, 21(7), pp.829-843.
Takin, M (1972) Iranian geology and continental drift in the Middle East. Nature, 235(5334), pp.147-150.
Vigh, T., Kovács, T., Somlai, J., Kávási, N., Polgári, M., Bíró L (2013) Terrestrial Radioisotopes in Black Shale Hosted Mn-Carbonate Deposit (Úrkút, Hungary). ActaGeophysica, vol. 61, no. 4, pp. 831–847.
Yang, R., Zhao, X., Li, H., Zhao, C., Pu, X., Liu, H., Fu, L. and Li, C (2020) Evolution characteristics of the upper Paleozoic source kitchen and its controlling effects on hydrocarbon accumulation in the Paleozoic petroleum system in Huanghua Depression, Bohai Bay Basin, China. Journal of Petroleum Science and Engineering, p.107415.