عوامل موثر بر غنی شدگی عناصر کمیاب و برهمکنش آن با ماده آلی در شیل های نفتی قالیکوه لرستان، باختر ایران

نویسندگان

1 دانشجوی دکترا، گروه زمین‌شناسی معدنی و آب، دانشکده علوم‌زمین، دانشگاه شهید بهشتی، تهران

2 استاد گروه زمین‌شناسی معدنی و آب، دانشکده علوم‌زمین، دانشگاه شهید بهشتی، تهران

3 استاد گروه حوضه‌های رسوبی و نفت، دانشکده علوم‌زمین، دانشگاه شهید بهشتی، تهران

4 کارشناس‌ارشد مدیریت اکتشاف شرکت ملی نفت ایران

چکیده

تاقدیس قالیکوه در 35 کیلومتری شهرستان الیگودرز، استان لرستان، باخـتر ایران و در زون زمـین­ساختاری زاگرس مرتفع قرار دارد. شیل­های نفتی قالیکوه در دو سازند سرگلو و گرو با سن ژوراسیک میانی و کرتاسه زیرین قرار گرفته­اند. سازند سرگلو شامل مجموعه­ای از رسوبات شیلی و سنگ­آهک­های رس­­­­­­­­دار است که در بخش انتهای این سازند شیل نفتی تشکیل شده است. سازند گرو متشکل از افق شیل نفتی با ضخامت­های متفاوتی از نهشته­های آهک نازک تا متوسط لایه و شیل­های آمونیت­دار و گرهک­های لایه­ای چرتی سیاه­رنگ است. شیل­های این دو سازند در ناحیه زاگرس مرتفع به دلیل غنی بودن از اجزای حیاتی (Organic Mater)، کروژن نوع I و II ماده آلی و بلوغ حرارتی نسبتا پایین که در ابتدای پنجره نفتی قرار دارند، تشکیل ذخایر شیل نفتی را داده­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­اند. این پژوهش به بررسی تاثیر فرایندهای ژئوشیمیایی بر غنی­شدگی عناصر کمیاب و برهمکنش آن با ماده آلی در شیل­های نفتی قالیکوه می­پردازد. نمونه­های شیل نفتی با استفاده از روش­های XRF، XRD،ICP-Ms و Rock-Eval تجزیه شدند و نتایج آن­ها با روش­های آماری مورد بررسی قرار گرفت که نتایج بدست آمده بیانگر غنی­شدگی بالایی عناصر  Cd,Mo,Ag,U,Csمی­باشد. همچنین با بررسی همبستگی اکسیدهای اصلی، ماده آلی، کانی­های تشکیل شده و عناصر غنی شده مشخص گردید که غنی­شدگی عناصر کمیاب U، V،Cd مرتبط با ماده آلی و اتوژنیک می­باشند، عناصر Ca،Si،P منشاء زیستی دارند و عناصر Ag،Ti منشاء آواری دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Factors affecting trace elements enrichment and its interaction with organic materials in Qalikouh oil shale, Lorestan, western Iran

نویسندگان [English]

  • A. Pourshaban 1
  • M. Yazdi 2
  • M. H. Adabi 3
  • M. daryabandeh 4
چکیده [English]

Qalikouh anticline is located 35 km southwest of Aligudarz city, Lorestan province, SW of Iran. The area is located in the high structural zone of Zagros. The oil shales of the areas are located in the Middle Jurassic and Lower Triassic of Sargelu and Garu Formations. The Sargelu Formation contains a series of shale, carbonate, oil shale and clays. Garau Formation includes oil shale horizons with different thicknesses, ammonite shales and black cherty layer. The shales of these two formations in the high Zagros region have formed oil shale reserves due to their richness in organic matter (OM), kerogen type is I and II and relatively low thermal maturity at the beginning of the oil window. This study focuses on the effect of geochemical processes on the enrichment of trace elements and its interaction with organic matter in Qalikouh oil shale. analysis was performed by XRF, XRD, ICP-Ms and Rock-Eval methods and Statistical significance was analyzed. The results of this study indicated the high enrichment of elements Cd, Mo, Ag, U, Cs. The correlation between immobilized and mobile oxides, organic matter, formed minerals and other factors was tested. These tests revealed that the enrichment of trace elements is affected by clastical, biological and autogenic materials. Elements U, V, Cd are related to organic and autogenic matter. Elements Ca, Si, P are of biological origin and elements Ag, Ti are of clastical origin.

کلیدواژه‌ها [English]

  • Geochemistry
  • Trace elements
  • Sargelu formation
  • Enrichment
Akinlua, A., Olise, F. S., Akomolafe, A. O., McCrindle, R. I (20016) Rare earth element geochemistry of petroleum source rocks from northwestern Niger Delta. Mar. Pet. Geol., 77: 409-417.
Alavi, M (2004) Regional stratigraphy of the Zagros Fold‐Thrust Belt of Iran and its proforeland evolution, Am. J. Sci., 304: 1– 20.3
Alfredson, P. G (1985) Review of oil shale research in Australia, in Eighteenth Oil Shale Symposium Proceedings: Golden, Colorado School of Mines Press, p. 162–175
Altun, N. E (2006) Oil shales in the world and Turkey; reserves, current situation and future prospects: a review. Oil Shale, 23(3): 211–227.
Amdurer, M., Adler, D. and Santschi, P. H (1983) Studies of chemical forms of trace elements in sea water using radiotracers. In: C. S, Wong, E. Boyle, K. W. Bruland, J. D. Burton and E. D. Goldberg (Editors), Trace Metals in Sea Water. Plenum Press, New York, N. Y, 537-562.
Anderson, R. F., Lehuray, A. P., Fleisher, M. Q., & Murray, J. W (1989) Uranium deposition in saanich inlet sediments, vancouver island. Geochimica et Cosmochimica Acta, 53: 2205–2213.
Barakat, M. A. Abd El-Gawad, E. A. Wahab Gaber, M. A. Lotfy, M. A. Abd El Ghan, A. A (2019) mineralogical and Geochemical Studies of Oil Shale Deposits in the Cretaceous/ Paleogene succession at Quseir Area.Egypt. Egyptian Journal of Petroleum, 28: 11-19.
Barnes, C. E. and Cochran, J. K (1990) Uranium removal in oceanic sediments and the oceanic U balance. Earth Planet. Sci. Left., 97: 94- 101.
Beevers, C. A (1985) The crystal structure of dicalcium phosphate dihydrate, CaHPO4⋅ 2H2O, Acta Crystallographica, 11: 273–277.
Berberian, M. and King, G (1981) Towards a Paleogeography and Tectonic Evolution of Iran. Canadian Journal of Earth Sciences, 18: 210-265.
Beydoun, Z. R., Hughes Clarke, M. W., & Stoneley, R (1992) Petroleum in the Zagros basin: A Late Tertiary foreland basin overprinted onto the outer edge of a vast hydrocarbon-rich Palaeozoic–Mesozoic passive margin shelf. American Association of Petroleum Geologists, Memoir, 55: 309–339.
Boggs, S (2009) Petrology of Sedimentary Rocks. Cambridge University Press, New York. 600 p.
Bordenave, M. L. and Huc, A. Y (1995) The Cretaceous source rocks in the Zagros Foothills of Iran: an example of a large size intracratonic basin. Rev. Inst. Fr. Petr. 727-753.
Borovec, Z (1974) Share of organic substances in the geochemistry of uranium. cas. Mineral. Geol., 19: 77-85 (in Czech).
Borovec, Z., Kribek, B. and Tolar, V (1979) Sorption of uranyl by humic acids. Chem. Geol., 27: 39-46.
Bostrom, K. and Fisher, D. E (1971) Volcanogenic uranium, vanadium and iron in Indian Ocean sediments. Earth Planet. Sci. Lett, 11: 95-98.
Bowen, H. J. M (1979) Environmental Chemistry of the Elements, Academic Press, New York, (In: Bradli, H. B (2005) Heavy Metals in the Environment, Elsevier Ltd.
Boyd, D. W. and Kustin, K (1984) Vanadium: a versatile biochemical effector with an elusive biological function. In: G. L. Eichhorn and L. I. Marzilli (Editors), Advances in Inorganic Biochemistry, 6. Elsevier, Amsterdam, 311-365.
Breit, G. N. and Wanty, R. B (1991) Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis. In: J.F. Branthaver and R.H. Filby (Guest-Editors), Trace Metals in [1] Petroleum Geochemistry. Chem. Geol, 91: 83-97.
Brumsack, H. J (2006) The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation; Palaeogeography, Palaeoclimatology, Palaeoecology, Cilt, 232: 344–361.
Colin, S (1995) Composition, Geochemistry and Conversion of Oil Shales, published by Kluwer Academic Publishers. 505p.
Cook, E. W (1973) Elemental abundances in Green River oil shale: Chemical Geology, 11: 321-324.
Crusius, J., Calvert, S., Pedersen, T., Sage, D (1996) Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition, EPSL, 154: 65–78.
Desborough, G. A., J. K. Pitman, and C. Htfffman, J. R (1976) Concentration and mineralogic residence of elements in rich oil shales of the Green River Formation, Piceance Creek Basin, Colorado, and the Uinta Basin, Utah--a preliminary report: Chemical Geology, 17: 13-26.
Ekoko Eric, B., Emile, E., Isaac Konfor, N., Fralick, P., Salomon Betrant, B., & Cathryn Ntoboh, T (2019) Inorganic geochemistry and petroleum source evaluation of organic black shale in the Mamfe Basin (West Africa). Solid Earth Sciences, 4: 166-177
Elliott, J. C (1994) Structure and chemistry of the apatites and other calcium orthophosphates, Amsterdam: Elsevier. 389p
Esmat, A. Abou El‑Anwar. Mekky, H. S. Abdel Wahab, W (2018) Geochemistry, mineralogy and depositional environment of black shales of the Duwi Formation, Qusseir area, Red Sea coast, Egypt. Carbonates and Evaporites, 34: 883-892.
Espitalie, J., Marquis, F., Barsony, I (1984) Geochemical logging. In: Voorhess KJ (ed) Analytical pyrolysis. Butterworths, Boston, 53–79.
Fei, H. Zhaojun, L. Qinjtao, M. Qinglei, S. Wenouan, X (2017) Characteristics and comprehensive utilization of oil shale of the upper cretaceous qinghankou formation in the southern songliao basin, NE China.  Oil Shale, 34: 312-335.
Fereidoni, M. Lotfi, M. Rashid nejad, N. Rashidi, M (2016) Using geochemical studies to determine the correlation between trace elements and organic and inorganic parameters in Ghalikooh oil shales. Scientific Journal of Exploration & Production Oil & Gas, 131: 55-64. (in Persian)
Fruchter, J. S., Wilkerson, C. L., Evans, J. C., and Sanders, R. W (1980) Elemental partitioning in an aboveground oil shale retort pilot plant: Environmental Science and Technology. 14: 1374-1381.
Golovanova, O. A (2006) Patogennye mineraly v organizme che loveka (Pathogenic minerals in human organism), Omsk: Omsk State Univ.
Goodarzi, F., Gentzis, T., Sanei, H., & Pedersen, P. K (2019) Elemental Composition and Organic Petrology of a Lower Carboniferous-Age Freshwater Oil Shale in Nova Scotia, Canada. ACS Omega, 24: 20773-20786.
Green, J (1959) Geochemical table of the elements for 1959. Geological Society of America Bulletin, 70: 1127-1183.
Hackley, P. C., & Cardott, B. J (2016) Application of organic petrography in North American shale petroleum systems: A review. International Journal of Coal Geology, 163: 8–51.
Hawkes, H. E., Webb, J. S (1979) Geochemistry in mineral exploration, 2nd edn. Academic Press, New York. 657 p
Hiatt, E. E., Pufahl, P. K. and Edwards, C. T (2015) Sedimentary phosphate and associated fossil bacteria in a Paleoproterozoic tidal flat in the 1.85 Ga Michigamme Formation, Michigan, USA. Sedimentary Geology, 319: 24–39.
Hitchon, B., Holloway, R (1976) Formation of Ralstonite during low temperature acid digestion of shale Canadian Mircralogist, 14: 391-392
Holland, H. D (1979) Metals in black shales--a reassessment. Econ. Geol., 74: 1676-1679.
Holmden, C., Amini, M. and Francois, R (2015) Uranium isotope fractionation in Saanich Inlet: a modern analog story of a paleoredox tracer. Geochim. Cosmochim. Acta, 153: 202–215.
James, G. A. & Wynd, J. G (1965) Stratigraphic nomenclature of Iranian Oil Consortium Agreement Area. AAPG Bulletin, 49: 2182-2245.
Jiang, Z., Zhang, W., Liang, C., Wang, Y., Liu, H., & Chen, X (2016) Basic characteristics and evaluation of shale oil reservoirs. Petroleum Research, 2: 149–163.
Kitakaze, A (1988) Tin-bearing Minerals from Bolivian Polymetallic Deposits and Their Mineralization Stages, Journal of Mining and Geology, 38: 419-435.
Klinkhammer, G. P. and Palmer, M. R (1991) Uranium in the oceans: Where it goes and why. Geochim. Cosmochim. Acta, 55: 1799- 1806.
Korago, L. A (1992) Vvedenie v biomineralogiyu (Introduction into biomineralogy), St. Petersburg: Nedra.
Krauskopf, K. B (1956) Factors controlling the concentrations of thirteen rare metals in sea water. Geochim.Cosmochim. Acta, 9: 1-32.
Kuz’mina, M. A., Zhuravlev, S. V., & Frank-Kamenetskaya, O. V (2013) The effect of medium chemistry on the solubility and morphology of brushite crystals. Geology of Ore Deposits, 55: 692–697.
Lee, K (1983) Vanadium in the aquatic ecosystem. In: J. O. Nriagu (Editor), Aquatic Toxicology, 13: 155-187.
Littke, R., Baker, D. R., & Rullkötter, J (1997) Deposition of petroleum source rocks. In Petroleum and Basin Evolution. Springer Berlin Heidelberg. 333p.
Liu, W. Yao, J. Tong, J. Qiao, Y. Chen, Y (2018) Organic matter accumulation on the Dalong Formation (Upper Permian) in western Hubei, South China: Constraints from multiple geochemical proxies and pyrite morphology. Palaeogeography, Palaeoclimatology, Paleoecology, 514: 677-689.
Luan, G. Dong, C. Azmy, K. Lin, C. Ma, C. Ren, L. Zhu, Z (2019) Origin of bedding-parallel fibrous calcite veins in lacustrine black shale: A case study from Dongying Depression, Bohai Bay Basin. Marine and Petroleum Geology,102: 873-885.
Lundager Madsen, H. E (2008) Optical properties of synthetic crystals of brushite (CaHPO4⋅ 2H2O), J. Crystal Growth, 310: 617–623.
Micera, G. and Dallocchia, R (1988) Metal complex formation of the surface of amorphous aluminum hydroxide, Part IV. Interactions of oxovanadium (IV) and vanadate(V) with aluminum hydroxide in the presence of succinic, malic and 2-mercaptosuccinic acids. Colloids Surfaces, 34: 185-196.
Motiei, H (1995) Petroleum Geology of Zagros. In A. Hushmandzadeh (Ed.), Treatise on the Geology of Iran. Geological Survey of Iran.
Nechay, B. R (1984) Mechanisms of action of vanadium. Annu. Rev. Pharmacol. Toxicol., 24: 501- 24.
Niocexp (2011) Petroleum geochemistry of oil shales (Middle Jurassic-Lower Cretaceous) from West Iran. (project report). 700 P. (in Persian).
O’Brine, G. W., Harris, J. R., Milnes, A. R. and Veeh, H. H (1981) Bacterial origin of East Australian continental margin phosphorites. Nature, 294: 442-444.
Ots, A (2011) Estonian oil shale properties and utilization in power plants (PDF). Energetika. Lithuanian Academy of Sciences Publishers. 53(2): 8–18. Retrieved 2011-05-06.
Pan, L., W. Dai, F., Q. Huang, J., N. Liu, S. Li, G. Q (2016) Study of the effect of mineral matters on the thermal decomposition of Jimsar oil shale using TG-MS. Thermochim Acta, 629: 31–38.
Patterson, J., H. Ramsden, A., R. Dale, L., S., Fardy, J., J (1986) Geochemistry and mineralogical residences of trace elements in oil shales from Julia Creek, Queensland, Australia. Chem Geol, 55: 1–16.
Peters, K. E (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis, AAPG Bulletin, 70: 318-329.
Pickhardt, W (1989) Trace elements in minerals of German bituminous coals. International Journal of Coal Geology, 14: 137–153.
Prange, A. and Kremling, K (1985) Distribution of dissolved molybdenum, uranium and vanadium in Baltic Sea waters. Mar. Chem., 16: 259-274.
Punanova, S. A (2019) Trace element Composition of shale formation. 29th International Meeting on Organic Geochemistry (IMOG).
Qian. X (1987) Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb–Zn ore deposits: Chin. J. Geochem, 6: 177 -190.
Rahmola, W. R. Syafri, I. Winantris, W. Suwarna N (2018) Source rock potential and depositional environment of oil Shale based on petrography characteristics and organic geochemistry in kapur IX, west Sumatra, jornal of geological sciences and applied geology. 2(6): 11-18.
Rashid, M. A (1972) Role of quinone groups in solubility and complexing of metals in sediments and soils. Chem. Geol. 9: 241--248.
Rasouli, A. Shekarifard, A. Jalali Farahani, F. Kök, M. Daryabandeh, M. Rashidi, M (2015) Occurrence of highly organic matter-rich deposits (Middle Jurassic to Lower Cretaceous) from Qalikuh locality, Zagros Basin, South-West of Iran: A possible oil shale resource, International Journal of Coal Geology, 143: 34-42.
Rippen, D., Littke, R., Bruns, B., Mahlstedt, N (2013) Organic geochemistry and petrography of Lower Cretaceous Wealden black shales of the Lower Saxony Basin: the transition from lacustrine oil shales to gas shales. Org. Geochem, 63: 18–36.
Rollinson, H. R (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical, New York. 352p.
Rosenberg, P. E (2006) Stability relation of Aluminum Hydroxy Fluoride Hydride Hydrate, A Ralstonite like mineral, in the system AlF3–Al2O3–H2O–HF, The Canadian Mineralogist, 44: 125-134.
Rudnick, R., L. Gao, S (2003) Composition of the continental crust. Treatise Geochem, 3: 1–64.
 Rumble, J (2020) Abundances of the elements in Earth's crust andin the sea, CRC Handbook of Chem, 2475p.
Shekarifard, A., Daryabandeh, M., Rashidi, M.  Hajian, M (2019) Geological and geochemical exploration of unconventional oils (Oil Shales) from Qalikuh, Lorestan. Scientific Journal of Exploration & Production Oil & Gas, 170: 16-22.
Shendrikar, A. D., and Faudel, G. B (1978) Distribution of trace metals during oil shale retorting: Environmental Science and Technology, 12: 332-334.
Shieh, C., Sh. and Duedall, l. W (1988) Role of amorphous ferric oxyhydroxide in removal of anthropogenic vanadium from seawater. Mar. Chem, 25: 121 - 139.
Shpirt, M. Y., Punanova, S. A., & Strizhakova, Y. A (2007) Trace elements in black and oil shales. Solid Fuel Chemistry, 41: 119–127.
Slansky, M (2003) Geology of sedimentary phosphates. Forough Azadie Publication, Tabriz, 240 p.
Stocklin, J (1968) Structural History and Tectonic of Iran: A Review. American Association of Petroleum Geologists Bulletin, USA, 52: 1229-1258.
Strubel, G. and Zimmer, S. H (1982) Lexikon der Mineralogie, Stuttgart: Enke, Moscow: Nedra, 1987.
Stylo, M., Neubert, N., Wang, Y., Monga, N., Romaniello, S. J., Weyer, S. and Bernier-Latmani, R (2015) Uranium isotopes fingerprint biotic reduction. Proc. Natl. Acad. Sci. USA, 112: 5619-5624.
Swarzenski, P. W., McKee, B. A., Skei, J. M., Todd, J. F (1999) Uranium biogeochemistry across the redox transition zone of a permanently stratified fjord; Framvaren, Norway. Marine Chemistry, 67: 181–198.
Taylor, S. R (1964) Abundance of chemical elements in the continental crust: a new table: Geochimica et Cosmochimica Acta, 28: 1273-1285.
Tissot, B. P. and Welte, D. H (1984) Petroleum Formation and Occurrence. 2nd Edition, Springer-Verlag, Berlin, 699 p.
TRW Environmental Engineering (1977) Trace elements associated with oil shale and its processing: U.S. Department of Commerce National Technical Information Service Report, PB-283 098, 51 p.
Turekian, K. K., and Wedepohl, K. H (1961) Distribution of the elements in some major units of the earth's crust: Geological Society of America Bulletin, 72: 175-192.
Tuttle, M. L., Dean, W. E. and Parduhn, N. L (1983) Inorganic geochemistry of Mahogany zone oil shale in two cores from the Green River Formation. In Mikinis, F. P., and J. F. McKay, eds., Geochemistry and chemistry of oil shales: Washington, D. C. American Chemical Society, 18: 249-267.
Tzifas, I. Tr., Goldelitsas, A., Magganas, A., Anderoulakaki, E., Eleftheriond, G., Mertzimckis, T. J. and Perraki, M (2014) Uranium-bearing phosphatized limestone of new Greece. Journal of Geochemical Exploration, 143: 62-37.
Vine, J. D., and Tourtelot, E. B (1970) Geochemistry of black shale deposits-a summary report: Economic Geology, 65: 253-272.
Wang, D. M. Xu, Y. M. He, D. M. Guan, j. and Zhang, O. M (2009) Investigation of mineral composition of oil shale, Asia-Pac. J. Chem. Eng, 4: 691–697.
Wang, J. Zhou, L. Mi J. Ma, C. Yang, H. Lei, H. Chen, J. and Ren, J (2019) Trace Elemental Geochemistry and Depositional Environment of Shale Oil Reservoir Rocks within the Permian Lucaogou Formation, Jimusaer Sag, IOP Conf. Series: Earth and Environmental Science, 101-108.
Wang, D. M., Xu, Y. M., He, D. M., Guan, J., & Zhang, O. M (2009) Investigation of mineral composition of oil shale. Asia-Pacific Journal of Chemical Engineering, 5: 691–697.
Wedepohl, K. H (1964) Untersuchungen am Kupferschiefer in Nordwestdeutschland: ein Beitrag zur Deutung der Genese bitumin6ser Sedimente. Geochim. Cosmochim.Acta, 28: 305-364.
Wehrli, B. and Stumm, W (1989) Vanadyl in natural waters: Adsorption and hydrolysis promote oxygenation. Geochim. Cosmochim. Acta, 53: 69-77.
WernerStumm, B (1999) Vanadyl in natural waters: Adsorption and hydrolysis promote oxygenation - Geochimica et Cosmochimica Acta, 53: 69-77
Wilkerson, C. L (1982) Trace metal composition of Green River retorted shale oil. Fuel, 61: 63‒70.
Yazdi, M (2012) Geological and geochemical features of Alborz Basin coal deposits. Journal of Sciences, Islamic Republic of Iran, 23: 163-169.