ارزیابی میزان آلودگی و توزیع فلزات سنگین در رسوبات رودخانه کارون در بازه پل پنجم تا فارسیت با استفاده از داده های ژئوشیمیایی و تحلیل های آماری

نویسندگان

1 دانشجوی دکترا رسوب‌شناسی و سنگ‌شناسی رسوبی، دانشکده علوم‌پایه، دانشگاه هرمزگان، بندرعباس

2 دانشیار گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه هرمزگان، بندرعباس

3 دانشیار پژوهشکده حفاظت خاک و آبخیزداری کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران

چکیده

در این پژوهش عناصر بالقوه سمناک آرسنیک، کادمیوم، کروم، مس، نیکل، سرب و روی در رسوبات سطحی رودخانه کارون در بازه پل پنجم تا فارسیت مورد بررسی قرار گرفتند. بدین منظور بر اساس یک استراتژی قطعی تعداد 21 نمونه رسوبات سطحی مطابق با پراکنش کانون­های نقطه­ای و غیرنقطه­ای آلودگی و ریخت­شناسی رودخانه­ای جمع­آوری شد. پس از آماده­سازی نمونه­ها، غلظت عناصر سمی و سولفور با استفاده از دستگاه ICP-MS و درصد کربن آلی کل به دست آمد. با استفاده از فاکتور غنی­شدگی و استانداردهای کیفیت رسوب (ISQGs, PEL, SEL)، سطح آلودگی ناشی از عناصر سمی آشکارسازی شد. برای شناسایی دسته عناصر فلزی دارای رفتار ژئوشیمیایی مشابه در محیط رسوبی و نیز یافتن مهمترین جاذب کاتیونی در بازه­های مورد بررسی از تحلیل خوشه­بندی سلسله مراتبی (AHC) با ضریب تشابه پیرسون در نرم­افزار XLSTAT2018 بهره­گیری شد. بررسی­ها بیانگر این است که بیش­ترین میزان فاکتور آلودگی را به ترتیب عناصر Zn، Cu و Ni با رده آلودگی زیاد به خود اختصاص داده­اند. این درحالی است که در رسوبات غنی‌شدگی متوسطی از عناصر Cu و Zn و غنی‌شدگی کم از Ni رقم خورده است. نتایج به خوبی بازه­های آلوده و پاک رودخانه کارون در بازه پل­پنجم تا فارسیت را مشخص کردند. از منظر غلظت، بخش عمده محدوده مورد مطالعه (به جز بازه روستای ابودبس تا شهرک گلستان) از عناصر Ni و Cr، قسمت­های پایین­دست از شبه فلز آرسنیک در سطح مخاطر آمیز قرار دارند. نیکل و کروم در بیش­تر نمونه­ها دارای غلظتی بیش از تراز PEL بوده و احتمال بروز مسمومیت برای آبزیان و بهره­برداران آب وجود دارد. تجزیه و تحلیل خوشه­­ای و ضریب همبستگی، نشان از همبستگی معنی­دار مثبت (r=0.701-0.993, p value<0.0001) بین عناصر Ni، Cr و As و رسوبات ریز دانه رسی در خوشه B و برقراری همبستگی معنی‌دار مثبت (r=0.643-0.850, p value<0.0001) بین عناصر فلزی سمی Pb و Cu و Zn  و مواد آلی در خوشه A دارد. ضرایب همبستگی بیانگر منشاء یکسان و یا رفتار ژئوشیمیایی مشابه آن­ها نسبت به هم و برقراری شرایط ژئوشیمیایی مشابه در انتقال و ورود آن­ها به فاز جامد یا کانی‌سازی در رسوبات سطحی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of heavy metal contamination and distribution in surface sediments of Karoun river, Panjoum Bridge to Farsit stations, using geochemical datas and statistical analysis

نویسندگان [English]

  • S. Choopani 1
  • P. Rezaee 2
  • M. R. Gharibreza 3
1
2
3
چکیده [English]

Rivers, as the living artery of the watershed, have played a decisive establishment of civilizations. But today, large amounts of pollutants enter the aquatic ecosystems, due to overpopulation and the expansion of industrial and agricultural activities. Among these, heavy elements are of special importance due to their stability, non-degradability, toxicity and bioaccumulation potential. Therefore, in this study, potential toxic elements (As, Cd, Cr, Ni, Cu, Pb, Zn) were investigated in order to determine the concentration, contamination factor and degree of contamination, geo-accumulation index, Enrichment and to detect the level of pollution caused by them. For this purpose, 21 surface sediment samples were collected based on the distribution of point and non-point pollution sources and river morphology. Samples were conditioned and concentration of toxic elements and sulfur were measured using ICP-MS at dry weight with accuracy of mg/kg and percentage of total organic carbon. Using enrichment factor and sediment quality standards (ISQGs, PEL, SEL), the level of contamination caused by toxic elements was detected. Hierarchical clustering analysis (AHC) with Pearson similarity coefficient was used to identify metal elements with similar behavior in river sedimentary environments and the most important cationic adsorbent such as organic matter and clay particles using XLSTAT2018 software. Examination of the samples showed that the highest levels of contamination factors were observed in Cu, Ni and Zn with an average of 3.64, 3.39 and 3.05 respectively, with high contamination. Then there are Cr, As and Pb elements with medium contamination factor and Cd with low contamination factor. The average total concentration of the detected metals in the surface sediment was Zn>Cr>Ni>Cu>Pb>As>Cd respectively. The results well identified the polluted and clean ranges of the Karoun River, Panjoum bridge to Farsit. Accordingly, the downstream of the study area of Karoun river (panjom bridge to Farsit) were polluted by the toxic metal of As and upstream of the urban area, and adjacent to the effluent of industrial estates to the river were contaminated considerably by the heavy metal of Cr and Ni at a risky level. Finally, the areas from Abu Debes village to Golestan town are clean from heavy elements. Ni and Cr have a concentration higher than PEL level and there is a possibility of poisoning for aquaculture and water users. Cluster analysis and correlation coefficient show high correlation and similarity between Ni, Cr and As in the B group and Pb, Zn and Cu in the A group. This correlation indicates the same origen or similar geochemical behavior. The research results emphasize the effect of urban-rural pollution (surface water drainage, construction waste and rubbish), industrial and agricultural effluents on the pollution of water resources and sediment of Karoun River, Panjoum Bridge to Farsit.

کلیدواژه‌ها [English]

  • Surface Sediments
  • Heavy Metals
  • Karoun River
  • Geochmistry
  • Clustering Analysis
راست­منش، ف.، زراسوندی، ع.، مسلم، ف (1394) ارزیابی آلودگی فلزات سنگین  در رسوبات سطحی رودخانه کارون در محدوده شهر اهواز، مجله زمین­شناسی کاربردی پیشرفته، دانشگاه شهید چمران اهواز، پاییز 94، شماره 17، ص 22- 11.
زارع­زاده، ر.، رضایی، پ (1393) مطالعه تجمع فلزات سنگین در رسوبات بستر مانگرو، خور گابریک (جاسک). نشریه محیط­زیست طبیعی، دوره 69، شماره1، ص61-78.
رفیعی، ب.، موثق، ع.، کریمخانی، ا.، صادقی­فر، م (1393) پراکندگی فلزات سنگین  در رسوبات سطحی خروجی تالاب انزلی، نشریه رسوب­شناسی کاربردی ، جلد 4، ص 15- 1.
رفیعی، ب.، حسین­پناهی، ف.، شکیبا آزاد، ع.، صادقی­فر، م (1393) بررسی پراکندگی و منشأ فلزات سنگین Ni, Co, Mn, Ti, V در رسوبات بستر دریاچه زریوار، نشریه رسوب­شناسی کاربردی ، جلد 3، ص 11- 1.
سالاری، م.، رادمنش، ف.، زارعی، ح (1391) ارزیابی کمی و کیفی منابع آب رودخانه کارون با استفاده از شاخصNSFWQI  و روشAHP ، فصلنامه انسان و محیط زیست، شماره 23، ص 22- 13.
شجاعیان، ز.، خدابخشی، ح. ر (1396) محاسبه آورد رسوب رودخانه کارون با استفاده از نرم­افزارGSTARS3، فصلنامه علمی تخصصی مهندسی آب، ص 130- 122.
عبیات، ا.، اژدری، ع.، جودکی، م.، درویشی، خ. ج (1396) بررسی و تفکیک محیط های رسوبی کواترنری در دشت خوزستان، مجله زمین شناسی کاربردی پیشرفته، دانشگاه شهید چمران اهواز، پاییز 96، شماره 25، ص 64- 49.
 علی­بیگی، ح.، میرزاده، ر.، محمودی، ر. ز. ا (1396) بررسی غلظت فلزات سنگین در رسوبات سطحی تالاب جغاخور، مجله محیط­شناسی، شماره 43، ص 161-149.
غریب­رضا، م. ر.، معصومی، ح.، جعفری گرزین، ب.، رحیم­زاده، ح.، اصغری­پور دشت بزرگ، ن(1399) ارزیابی کیفیت رسوبات سطحی رودخانه تجن و تعیـین سطـح آلودگی بوم­شناسی، مجله محیط­زیست و مهندسی آب، دوره 6، شماره 4، ص 500- 485.
غریب­رضا، م. ر.، مهدی­زاده، م.، معصومی، ح (1399) ارزیابی ریسک اکولوژیک رسوبات رودخانه روضه چای با استفاده از شاخص کیفیت رسوب، گزارش نهایی، پژوهشکده حفاظت خاک و آبخیزداری 45 ص.
غلام­دخت بندری، م.، رضایی، پ.، قربانی، م، کمانگر، م (1395) پایش ژئوشیمیایی و زمین زیست محیطی عناصر اصلی و فرعی در رسوبات ساحلی جزیره هرمز)خلیج­فارس( و  ترسیم نقشه­های هم­پراکنش، مجله محیط­زیست و مهندسی آب، دوره 2، شماره 3، ص 283- 267.
کریمی، ش ( 1395) تعیین شاخص شدت آلودگی به عناصر سنگین در رسوبات رودخانه کارون (محدوده شهر اهواز تا خرمشهر)، پایان­نامه کارشناسی­ارشد، دانشگاه آزاد اسلامی واحد اهواز، 62 ص.
محمدزاده، ژ.، روزبهانی، م.، بابایی­نژاد، ت (1397) تجمع فلزات سنگین در گیاه نی (Phragmites australis) و رسوبات رودخانه کارون (محدوده شهر اهواز)، نشریه اکوبیولوژی تالاب، شماره 1 ( پیاپی 35)، ص 64 – 55.
مرشدی، ج.، علوی­پناه، س. ک.، مقیمی، ا (1392) بررسی تغییرات طولی رودخانة کارون با استفاده از روش میانگین جهت­دار خطی (منطقة مورد مطالعه: از شوشتر تا اروند)، مجله محیط­شناسی، دوره 39، شماره 4، ص 104-89.
Ashraf M. A., Sarfaraz M., Rizwan a N. and Gharibreza, M (2015) Environmental Impacts of Metallic Elements. Singapore. Springer. 434p
Audry, S., Schafer, J., Blanc, G., Jouanneau, J. M (2004) Fifty- year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France), Environmental Pollution, 132 (3): 413- 426.
Berner, R. A. and Raiswell, R (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geol., 12(6): 365-368.
CBSQG (2003) Recommendations for Use & Application Interim Guidance, in Consensus-Based Sediment Quality Guidelines, J. Dovle, Editor. Department of Natural Resources: Wisconsin. 40.
CCME (1995) Protocol for the Derivation of Canadian Sediment Quality Guidelines for the Protection of Aquatic Life, E.C.G.a.S. Division, Editor. Environment Canada, Guidelines Division, Technical Secretariat of the CCME Task Group on Water Quality Guidelines: Ottawa.
Choie, K. Y., Kim, S. H., Hong, G. H., chon, H. T (2012) Distibution of Heavy metals in the sediments of South Korean Harbors, Environ Geochem Health, 34: 71-82.
David, A. J., and Leventhal, J. S (1995) Bioavailability of metals. Chap2, (July 1995).
Diop, Ch., Dewaelé, D., Cazier, F., Diouf, A., and B. Ouddane (2015) Assessment of trace metals contamination level, bioavailability and toxicity in sediments from Dakar coast and Saint Louis estuary in Senegal, West Africa. Chemosphere, 138: 980-7.
EPA (2001) Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual. Environmental Protection Agency.
Fortescue, J. A. C (1992) Landscape geochemistry: retrospect and prospect. Appl. Geochem, 7(1): 1-53.
Gharibreza, M. and Ashraf, M. A (2014) Applied Limnology. Tokyo, Heidelborg, New York, Dordrecht, London. Springer. 199.
Gibbs, R. J (1973) Mechanisms of trace metal transport in rivers, Science, 180: 71-73.
Gonzales- Macias, C., Schifter, I., Liuch- Cota, D. B., endez- Rodriguez, L., & Hernandez- Vazquez, S (2006) Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, Mexico, Environmental Monitioring and Assessment, 118: 211- 230.
Hakanson, L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8): 975-1001.
Heikki, L (1999) Removal of harmful metals from metals plating waste waters using selective ion exchangers.
Júnior, J. B. S., Abreu, I. M., Oliveira, D. A. F., Hadlich, G. M. and Albergaria Barbosa, A. C. R (2020) Combining geochemical and chemometric tools to assess the environmental impact of potentially toxic elements in surface sediment samples from an urban river. Mar. Pollut. Bull, 155: 111-146.
Kingston, H. M. and Jassie, L. B (1998) Introduction to Microwave Sample Preparation Theory and Practice. ACS Professional Reference Book Series. Washington, DC: American Chemical Society.
Koaser, S., Barrington, S., Elektorowicz, M., and Wang, L (2003) Effect of Pb and Cd on Cu adsorbtion by sand – bentonite liner. Can, J. Civ. Eng, 32(2): 241-249.
Liu, J., Yin, P., Chen, B., Gao F., Song, H. and Li, M (2016) Distribution and contamination assessment of heavy metals in surface sediments of the Luanhe River Estuary, northwest of the Bohai Sea. Mar. Pollut. Bull, 109: 633–639.
Loring, D. L., Naes, K., Dahle, S., Matishov, G. G. and Illind, D (1995) Arsenic, trace metals, and organic micro contaminants in sediments from the Pechora Sea, Russia. Mar. Geol, 128: 152-167.
Milačič, R., Zuliani, T., Vidmar, J., Bergant, M., Kalogianni, E., Smeti, E., Skoulikidis, N. and Ščančar, J (2019) Potentially toxic elements in water, sediments and fish of the Evrotas River under variable water discharges. Sci. Total Environ, 648: 1087–1096.
Miller, J. R (1997) The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites. J. Geochem. Explor, 58(2–3): 101-118.
Muller, G (1979) Schwermetalle in den sedimenten des Rheins Veranderungen seit 1971, Umschau, 79 (24): 778- 783.
Muller, G (1969) Index of geoaccumulation in sediments of the Rhine River, GeoJournal, 2: 108–118.
Nasrabadi, T., Nabi Bidhendi, G., Karbassi, A. and Mehrdadi, N (2010) Evaluating the efficiency of sediment metal pollution indices in interpreting the pollution of Haraz River sediments, southern Caspian Sea basin. Environ. Monit. Assess, 171: 395–410.
Radtke, D. B (2005) Bottom-Material Samples, U. S. Geological Survey, Department of the Interior, National Field Manual for the Collection of Water-Quality Data.
Rudnick, R. L. and Gao, S (2014) Composition of the Continental Crust, in Treatise on Geochemistry (Second Edition), H.D. Holland and K.K. Turekian, Editors. Elsevier: Oxford, p. 1-51.
Salomons, W., Forstner, V (1984) Metals in the Hydro-Cycle. Berlin, Springer.
Sinex, S., Wright, D (1988) Distribution of trace metals in the sediments and biota of Chesapeake Bay, Mar, Pollut. Bull, 19: 425–431.
Sutherland, R. A. and Tolosa, C. A (2000) Multi-element analysis of road-deposited sediment in an urban drainage basin, Honolulu, Hawaii. Environ. Pollut, 110: 483-495.
Sutherland, R. A. and Tolosa, C. A (2000) Multi-element analysis of road-deposited sediment in an urban drainage basin, Honolulu, Hawaii. Environ. Pollut, 110: 483-495.
Taylor, S. R (1964) Abundance of chemical elements in the continental crust: a new table. Geochim. Cosmochim. Act, 28(8): 1273-1285.
Tucker, M. E (1988) Techniques in sedimentology, Blackwells, Oxford, 394 pp.
Unlu, S., Topcuoglu, S., Alpar, B., Kirbasoglu, C., Yilmaz, Y. Z (2008) Heavy metal pollution in surface sediment and mussel samples in the Gulf of Gemlik, Environ. Monit. Assess, 144(1-3): 169–178.
Ustaoğlu, F. and Islam, S (2020) Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecol. Indicat, 113: 106-137.
Walkley, A. and Black, I. A (1934) An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci, 37(1): 29-38.
Wernimont, G. T. and Spendley, W (1985) Use of Statistics to Develop and Evaluate Analytical Methods, in AOAC Int. Arlington, VA.
Zarezadeh, R., Rezaee, P., Lak, R., Masoodi, M., & Ghorbani, M (2017) Distribution and accumulation of heavy metals in sediments of the northern part of mangrove in Hara Biosphere Reserve, Qeshm Island (Persian Gulf). Soil and Water Research, 12(2): 86-95.
     ZareZadeh, R., Rezaee, P., Lak, R., Masoodi, M., & Ghorbani, M (2017) A study of textural and accumulation heavy metals of sediments in mangrove ecosystem of Persian Gulf, South Iran.‏ NISCAIR-CSIR, India, 46(01): 78-85.
Zhang, J., Liu, C. L (2000) Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes, Estua. Coast. Shelf Sci, 54: 1051–1070.