استفاده از تخلخل سه‌گانه حاصل از نمودارهای تصویرگر و چاه‌پیمایی در تعیین واحدهای جریانی‌ یکی از مخازن جنوب باختر ایران

نویسندگان

1 دانشجوی کارشناسی‌ارشد، گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه شهید چمران اهواز، اهواز

2 استاد گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه شهید چمران اهواز، اهواز

3 دانشجوی کارشناسی‌ارشد، گروه حوضه‌های رسوبی و نفت، دانشکده علوم‌زمین، دانشگاه شهید بهشتی، تهران

چکیده

مخازن آسماری- جهرم یکی از اصلی­ترین مخازن شکسته جنوب­باختری ایران و دنیا‌ می‌باشند که امروزه بررسی نقش این شکستگی‌ها در افزایش تراوایی و حرکت هیدروکربن در طول این مخازن از اهمیت بسیاری برخوردار است. در این مطالعه نمودارهای پتروفیزیک (NPHI، RHOB، DT، GR) و تصویرگر (FMI) در نرم­افزارهای GEOLOG 7.0 و CIFLOG بررسی شدند که با محاسبه مقادیر تخلخل شکستگی و حفره‌ای و تطابق آن با لاگ انحراف سرعت و پارامترهای شکستگی (VAH,VDC) نشان داده شد که مقدار تخلخل شکستگی با لاگ دهانه‌ی شکستگی (VAH) رابطه‌ی مستقیم دارد و در مناطقی که مقدار لاگ انحراف سرعت منفی و پایین باشد پارامترهای شکستگی بخصوص نمودار VAH، پیک‌های بالایی را نشان می‌دهند. همچنین نوع تخلخل غالب موجود در مخزن بر اساس لاگ انحراف سرعت، تخلخل زمینه (اولیه) است که در بعضی فاصله‌ها تخلخل شکستگی و حفره‌ای هم در مخزن دیده می‌شود. در آخر بر اساس شواهد غیرمستقیم (هرزروی گل­حفاری)، نوع تخلخل (زمینه، شکستگی و حفره‌ای)، مقدار تخلخل و کیفیت اشباع نفت در چاه مورد نظر 18 واحد جریانی تشخیص داده شد که بر همین اساس به تعیین واحدهای جریانی با کیفیت مخزنی مناسب پرداخته شد. در سازند آسماری چاه مورد مطالعه در بازه‌ عمقی 2225 تا 2250 بیش­ترین تراکم شکستگی مشاهده می­شود که بر این اساس می‌توان واحد جریانی شماره 4 را به عنوان منطقه با بیش­ترین تراوایی نسبی برای این سازند معرفی کرد، همچنین بیش­ترین میزان تراکم شکستگی‌ها در سازند جهرم بین بازه‌ی عمقی 2475 تا 2569 قرار دارد که می‌توان بیان کرد واحد جریانی شماره 16، بیش­ترین تراوایی نسبی را در سازند جهرم فراهم کرده است.

کلیدواژه‌ها


عنوان مقاله [English]

Application of triple porosity using of image logs and well logs in zonation in one of the oil wells in the southwest of Iran

نویسندگان [English]

  • R. Musavi-Hashemi 1
  • B. Soleimani 2
  • F. Saberi 3
  • P. Asoude 3
چکیده [English]

Asmari-Jahrom reservoirs are one of the main fractured reservoirs in the southwest of Iran and the world (Nelson, 2001). It is very important to study the role of these fractures in increasing the permeability and movement of hydrocarbons along these reservoirs (Alavi, 2004, 2007; McQuillan, 1986). In this study, petrophysical logs (NPHI, RHOB, DT, GR) and image logs (FMI) in GEOLOG 7.0 and CIFLOG software were investigated. Finally, by calculating the amount of fracture and vuggy porosity and correlating them with velocity deviation log (VDL) and fracture parameters (VAH, VDC), it was shown that the amount of fracture porosity is directly related to fracture aperture (VAH) and where the velocity deviation log is negative and low, fracture parameters especially the VAH diagrams show the high peaks. Also, the predominant type of porosity in the reservoir based on the velocity deviation log is the matrix (primary) porosity, which at some distances, fracture porosity and vuggy can be seen in the reservoir. Finally, based on indirect evidence (drilling mud wastage), type of the porosity (matrix, fracture and vuggy), the amount of porosity and the quality of oil saturation in the well, 18 zones were identified, which to determine the quality zone (s) with appropriate reservoir quality. In Asmari Formation of the studied well, in the depth range of 2225 to 2250, the highest fracture density is observed, based on which Zone No. 4 can be introduced as the region with the highest relative permeability for this formation. Also, the highest fracture density in Jahrom Formation is between 2475 to 2569 depth range, which can be said that Zone No. 16 has provided the highest permeability in the Jahrom Formation.

کلیدواژه‌ها [English]

  • Nargesi oilfield
  • Porosity and permeability
  • image log (FMI)
  • Zoning oil fields
خوشبخت، ف (1391) مدل‌سازی تخلخل سه­گانه در یک مخزن کربناته با استفاده از لاگ تصویرگر و لاگ‌های چاه­پیمایی، چهارمین کنفرانس مهندسی معدن ایران، تهران، انجمن مهندسی معدن، دانشگاه تهران.
رضایی، م (1387) زمین‌شناسی نفت، انتشارات علوی، چاپ سوم، 472 ص.
رهسپار، ا.، کدخدائی، ع.، بیدهندی، ن (1395) تعیین رخساره‌های الکتریکی مخزنی با استفاده از روش‌های خوشه‌سازی (SOM، AHC، MRGC وDYNCLUST) در بخش عرب در چاه 2S-05  میدان نفتی سلمان. نشریه پژوهش نفت، دوره 26، شماره 2، ص 107–117.
سراج، م.، تقوی­پور، ش.، عباباف، ر.، محمدیان، ر (1387) بررسی پارامترهای هندسی و جنبشی شکستگی­ها در مخزن آسماری میدان رگ­سفید براساس تحلیل نمودارهای تصویرگر (FMS)، مجموعه مقالات دوازدهمین همایش انجمن زمین­شناسی ایران، اهواز.
ساعدی. ق (1388) تحلیل شکستگی­های مخزن آسماری میدان نفتی لالی با استفاده از نمودار تصویرگر FMS، پایان­نامه کارشناسی­ارشد زمین­شناسی گرایش نفت، دانشگاه چمران اهواز، 152ص
صمدی، ا.، سلیمانی، م.، کردی،م.، احمدی، ا (1398) ارایه استراتژی شناسایی و مدلسازی توامان شکستگی­ها به کمک نمودار FMI و داده­های لرزه­ایی در فرایند واحد جریان­بندی مخزن در یکی از میادین جنوب ایران، نشریه ژئومکانیک نفت، دوره 3، شماره 3، ص 14-27.
ظهراب­زاده، م (1384) تحلیل سیستماتیک شکستگی­های مخزن آسماری میدان رگ­سفید با استفاده از نتایج نمودارهای FMS/FMI، گزارش شماره پ – 5718، شرکت ملی مناطق نفت­خیز جنوب.
ظهراب­زاده، م (1388) تحلیل سیستماتیک شکستگی­های مخزن آسماری در یکی از میادین جنوب­غرب ایران (با استفاده از نتایج تفسیر نمودارهای تصویرگر)، مجله اکتشاف و تولید، شماره 63، ص 46 تا54.
غفوری، م (1384) آنالیز شکستگی­ها و ژئومکانیک چاه با استفاده از نمودارهای تصویرگر، مجله اکتشاف و تولید، شماره 27، ص 11تا21.
نعمتی، م. ح.، نوروزی، غ. ح.، ریاحی، م. ع (1387) تعیین شکستگی با استفاده از تبدیل موجک و مدلسازی آن در مخازن گروه دهرم یکی از میدان­های ایران، مجله فیزیک زمین و فضا، شماره 4، ص 105 تا 116.
Aghli, G., Soleimani, B., Moussavi-Harami, R. & Mohammadian, R (2016) Fractured zones detection using conventional petrophysical logs by differentiation method and its correlation with image logs. Journal of Petroleum Science and Engineering, 1(42): 162-152.
Alavi, M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science, 304(1): 1–20. https://doi.org/10.2475/ajs.304.1.1.
Alavi, M (2007) Structures of the Zagros fold-thrust belt in Iran. American Journal of Science, 307(9): 1064–1095. https://doi.org/10.2475/09.2007.02.
Ameen, M. S (2014) Fracture and in-situ stress patterns and impact on performance intheKhuff structural prospects, eastern offshore Saudi Arabia. Marine and Petroleum Geology, 50: 166–184. https://doi.org/10.1016/j.marpetgeo.2013.10.004.
Anselmetti, F. S. & Eberli, G. P (1999) The velocity-deviation log: A tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density logs. AAPG bulletin, 83: 450-466.
Chitale, V. D., Johnson, C., Entzminger, D., & Canter, L (2010) Application of a modern electrical borehole imager and a new image interpretation technique to evaluate the porosity and permeability in carbonate reservoirs: A case history from the permian basin, United States. AAPG Memoir, 92: 295–307.
Donselaar, M. E., & Schmidt, J. M (2005) Integration of outcrop and borehole image logs for high-resolution facies interpretation: Example from a fluvial fan in the Ebro Basin, Spain. Sedimentology, 52(5): 1021–1042.
  https://doi.org/10.1111/j.1365-3091.2005.00737.x
Folkestad, A., Veselovsky, Z., & Roberts, P (2012) Utilising borehole image logs to interpret delta to estuarine system: A case study of the subsurface Lower Jurassic Cook Formation in the Norwegian northern North Sea. Marine and Petroleum Geology, 29(1): 255–275.
https://doi.org/10.1016/j.marpetgeo.2011.07.008
Guadagno, F. & Nunziata, C (1993) Seismic velocities of fractured carbonate rocks (southern Apennines, Italy). Geophysical Journal International, 113: 739-746.
Khoshbakht, F., Memarian, H. & Mohammadian, M (2009) Comparison of Asmari, Pabdeh and Gurpi formation's fractures, derived from image log. Journal of Petroleum science and Engineering, 67: 65-74.
McQuillan, H (1986) Fracture-controlled production from the Oligo-Miocene Asmari formation in Gachsaran and Bibi Hakimeh fields, southwest Iran. In Carbonate Petroleum Reservoirs, 33: 511–523. https://doi.org/10.1007/978-1-4612-5040-1.
 Muniz, M. C., & Bosence, D. W. J (2015) Pre-salt microbialites from the Campos Basin (offshore Brazil): Image log facies, facies model and cyclicity in lacustrine carbonates. Geological Society Special Publication, 418(1): 221–242. https://doi.org/10.1144/SP418.10.
Nur, A. & Simmons, G (1969) The effect of saturation on velocity in low porosity rocks. Earth and Planetary Science Letters, 7: 183-193.
Nelson, R (2001) Geologic Analysis of Naturally Fractured Reservoirs. Geologic Analysis of Naturally Fractured Reservoirs. Elsevier.
Rajabi, M., Sherkati, S., Bohloli, B., & Tingay, M. (2010) Subsurface fracture analysis and determination of in-situ stress direction using FMI logs: An example from the Santonian carbonates (Ilam Formation) in the Abadan Plain, Iran. Tectonophysics, 492(1–4): 192–200.
https://doi.org/10.1016/j.tecto.2010.06.014
Serra, O (1989) Formation MicroScanner image interpretation, Schlumberger Educational Services.
Serra, O. & Serra, L (2004) Well logging: data acquisition and applications, France: Serralog.
Sherkati, S., & Letouzey, J (2004) Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran. In Marine and Petroleum Geology, 21 (5): 535–554.
Staffelbach, ch,, Evans, R.. j. Anis, A. H (2004) Integrating Core Data and Image Logs: The Critical Steps in Modelling a Fractured Carbonate Reservoir, Corias 74, Allée de la Robertsau 67000 Strasbourg SCA 2004- Poster presentation.
Tang, J., Zhang, C., & Xin, Y (2017) A fracture evaluation by acoustic logging technology in oil-based mud: A case from tight sandstone reservoirs in Keshen area of Kuqa depression, Tarim Basin, NW China. Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development, 44(3): 418–427. https://doi.org/10.11698/PED.2017.03.08
Wang, S., Wang, G., Lai, J., Li, D., Liu, S., Chen, X., Yang, K., & Song, L (2020) Logging identification and evaluation of vertical zonation of buried hill in Cambrian dolomite reservoir: A study of Yingmai-Yaha buried hill structural belt, northern Tarim basin. Journal of Petroleum Science and Engineering, 195, 107758.
https://doi.org/10.1016/j.petrol.2020.107758
Wilson, M. E. J., Lewis, D., Yogi, O., Holland, D., Hombo, L., & Goldberg, A (2013) Development of a Papua New Guinean onshore carbonate reservoir: A comparative borehole image (FMI) and petrographic evaluation. Marine and Petroleum Geology, 44: 164–195.  
https://doi.org/10.1016/j.marpetgeo.2013.02.018
Xu, C (2007) Interpreting shoreline sands using borehole images: A case study of the Cretaceous Ferron Sandstone Member in Utah. American Association of Petroleum Geologists Bulletin, 91(9): 1319–1338.