رخساره ها و محیط رسوبی بخش پایینی سازند آخوره (ائوسن میانی)، برش شوراب، شمال نایین

نویسندگان

1 کارشناس‌ارشد زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه اصفهان، اصفهان، ایران

2 استادیار گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه اصفهان، اصفهان، ایران

3 استادیار گروه زمین‌شناسی، دانشکده علوم‌زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

توالی مورد مطالعه شامل بخش پایینی سازند آخوره (ائوسن میانی) در شمال نایین واقع در زون ایران مرکزی می‌باشد. این سازند به صورت نهشته‌های آواری و با ضخامت زیاد در طی فاز کوهزایی لارامید و فرسایش بلندی‌های حاصل از چین خوردگی و همزمان با فعالیت‌های آتشفشانی بعد از ائوسن تشکیل شده است. این توالی شامل 505 متر ماسه سنگ، کنگلومرا و سیلستون بوده که به 10 واحد چینه شناسی تفکیک شده است. در توالی مورد مطالعه رخساره‌های آواری شناسایی شده شامل سه دسته اصلی درشت، متوسط و ریزدانه و همچنین رخساره‌ی خاک دیرینه P می باشد.. رخساره درشت دانه شامل Gcm، Gh، Gp، Gci، Gmm و Gmg می‌باشد. رخساره دانه متوسط شامل Sh و Sm بوده و رخساره‌ی دانه ریز شامل Fl، Fsmو Fm می‌باشد. رخساره های شناسایی شده در توالی مورد مطالعه به چهار مجموعه رخساره آواری گروه بندی شده‌اند. همچنین عناصر ساختاری GB، SG، SB و OF شناسایی گردیده است. این عناصر ساختاری مربوط به یک محیط قاره‌ای از نوع رودخانه بریده بریده است. وجود محیط قاره‌ای در بخش پایینی سازند مذکور با مطالعات جغرافیای دیرینه هم خوانی دارد. مطالعه این توالی رسوبی علاوه بر این که برای اولین بار محیط رسوبی آن مورد بررسی قرار می‌گیرد، نتایج بدست آمده نیز اطلاعات مهمی را در رابطه با تکامل ژئودینامیکی ایران مرکزی در طول ائوسن میانی ارائه می‌نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Facies and sedimentary environment of the lower Akhoreh Fm (Middle Eocene), Shurab section, north of Nain

نویسندگان [English]

  • M. Mallah 1
  • M. A. Salehi 2
  • M. Jafarzadeh 3
  • Z. Mazroei Sebdani 1
چکیده [English]

In this study, the lowermost part of Akhore Formation with Middle Eocene age at the Shurab section, in the north Naein, east Isfahan has been studied. In this research, a stratigraphic section with 505 meters thickness is measured and ten lithostratigraphic units differentiated and composed of a thin basal conglomerate followed by the alternation of mostly purple sandstones and shales.This succession covered the Naein Ophiolite Complex,. Lithofacies analysis led to the identification of six coarse-grained facies (Gcm, Gp, Gh, Gci, Gmg, Gmm), two medium-grained (Sm, Sh) and three fine-grained (Fl, Fm, Fsm) as well as pedogenic fearute (P). Lithofacies studies led to identification of five facies associations which have been deposited in the sub environments of Sediment Gravity flow (SG), Sandy-bedform (SB), Floodplain (OF), Gravel-bar (GB), Foreset macroforms (FM) for braided river. The study of this succession provides us with important information on the geodynamic evolution of central Iran during the Middle Eocene.

کلیدواژه‌ها [English]

  • Facies
  • Depositional environment
  • Middle Eocene
  • Akhore Formation
  • Naein
  • central Iran
آقانباتی، ع (۱۳۸۵) زمین­شناسی ایران، سازمان زمین­شناسی و اکتشافات معدنی کشور، ۵۸۶ ص.
اعتمادسعید، ن.، نجفی، م.، زین­العابدین قویم، ن.، قدس، ع. ا.، (۱۳۹۷) آنالیز رخساره­ای و بازسازی محیط نهشتی دیرینه رسوبات پیش­بومی نئوژن در شمال فروبار دزفول، زاگرس. مجله علوم زمین، شماره ۱۰۸، ص ۳-۱۲.
امینی، ع. ا (۱۳۹۷) محیط­های رسوبی. انتشارات دانشگاه تهران (چاپ دوم)، ۴۷۶ ص.
حاجیان، ج (۱۳۷۵) زمین­شناسی ایران: پالئوسن- ائوسن در ایران، سازمان زمین­شناسی کشور، شماره ۲۸، ۴۶۰ ص.
خالصی­نائینی، م.، صالحی، م. ع.، تدین، م.، جعفرزاده، م (1399) بررسی رخساره­های رسوبی نهشته­های آواری ائوسن در شمال نایین: کاربرد در بازسازی شرایط محیط­رسوبی دیرینه ایران مرکزی، سیزدهمین همایش انجمن دیرینه­شناسی ایران، اصفهان، ص 75-82.
خسروتهرانی، خ (۱۳۸۴) زمین­شناسی ایران: مزوزییک-سنوزوییک، جلد دوم، انتشارات کلیدر، ۵۰۰ ص.
درویش­زاده، ع (۱۳۷۰) زمین­شناسی ایران، انتشارات امیرکبیر، ۴۳۴ ص.
زارعی­سهامیه، ر.، یوسفی­یگانه، ب (1387) رخساره­های رسوبی و جهت جریان دیرینه در سازند کشکان غرب خرم­آباد، مجله علوم­پایه دانشگاه بوعلی­سینا، شماره 5، ص 35-25.
موسوی­حرمی، س. ر (۱۳۸۹) رسوب­شناسی، انتشارات آستان قدس رضوی (چاپ دوازدهم)، ۴۷۴ ص.
Alonso-Zarza, A. M (2003) Palaeoenvironmental significance of palustrine carbonates, calcretes in the geological record. Earth Science, 60: 261- 298.
Ashmore, P (2013) Morphology and dynamics of braided rivers. In: Shroder, J., Wohl, E. (Eds.), Treatise on Geomorphology. San Diego: Academic Press, 289-312.
Barrier, E., Vrielynck, B., Brouillet, J. F., Brunet, M. F (2018) Paleotectonic reconstruction of the central Tethyan realms. paris, commission for Geological Map of the World: CGMW/CCGM.
Belletti, B., Dufour, S., Piégay, H (2015) What is the relative effect of space and time to explain the braided river width and island patterns at a regional scale?. River Research and Applications, 31: 1-15.
Blatt, H., Middleton, G. V., Murray, R (1980) Origine of Sedimnetray Rocks (2nd edition). Prentice Hall Inc, Englewood Cliffs, Newjersey.
Catuneanu, O (2003) Sequence Stratigraphy of Clastic Systems. Geological Association of Canada. Short Course Notes, 16: 1-248.
Connor-Streich, G., Alexander, J.H., James B., Walter, B., Harvey, G. L (2018) Let’s get connected: A new graph theory-based approach and toolbox for understanding braided river morphodynamics. WIREs Water, 5(5): 1-26.
Davoudzadeh, M (1972) Geology and petrography of the area north of Nain, central-Iran. Geological Survey of Iran, 14, 89 p.
De La Horra, R., Benito, M. I., Lopez-Gomez, J., Arche, A., Barrenechea, J. F, Luque, J (2008) Palaeoenvironmental significance of Late Permian palaeosols in the South-Eastern Iberian Ranges, Spain. Sedimentology, 55: 1849-1873.
Einsele, G (2000) Sedimentary Basin Evolution, Facies and Sediment Budget (2nd edition). Springer.
Folk, R. L (1980) Petrology of Sedimentary Rocks. Hemphill Publishing Company., Austin, Texas.
Ghazi, Sh., Mountney, N. P (2009) Facies and architectural element analysis of a meandering fluvial succession, The Permian Warchha Sandstone, salt Range: Pakistan. Sedimentary Geology, 221: 99-126.
Ghosh, S (2014) Palaeogeographic significance of ferruginous gravel lithofacies in the Ajay-damodar interfluve, West Bengal, India. International Journal of Geology, 4: 81-100.
Harms, J. G., Fahnestock, R. K (1965) Classification, bed forms and flow phenomena (with an example from the Rio Grande). In: Middleton, G. V. (Ed.), Primary Sedimentary Structures and Their Hydrodynamic Interpretation. Society of Economic Paleontologists and Mineralogists Special Publication, 84-115.
Higgs, K. E., King, P. R., Raine, J. I., Sykes, R., Browne, G. H., Crouch, E., Baur, J. R (2012) Sequence stratigraphy and controls on reservoir sandstone distribution in an Eocene marginal marine-coastal plain Fairway, Taranaki Basin, New Zealand. Marine and Petroleum Geology, 30: 175-192.
Ito, M., Matsukawa, M., Saito, T., Nichols, D. J (2006) Facies architecture and paleohydrology of a synrift succession in the Early Cretaceous Choyr Basin, Southern Mongolia. Cretaceous Research, 27: 226-240
Kim, J. C., Lee, Y. I., Hisada, K. I (2007) Depositional and compositional controls on sandstone diagenesis, the Tetori Group (Middle Jurassic-Early Cretaceous), central Japan. Sedimentary Geology, 195: 183-202.
Kostic, B., Bech, A., Aigner, T (2005) 3-D sedimentary architecture of a Quaternary gravel delta (SW-Germany): Implication for hydrostratigraphy. Sedimentary Geology, 181: 143-171.
Kwon, Y. K., Chough, S. K., Choi, D. K., Lee, D. J (2002) Origin of limestone conglomerates in the Choson Supergroup (Cambro-Ordovician), mid-east korea. Sedimentary Geology, 146: 265-283.
Kumar, P., Shekhar, S., Shukla, A., Chakraborty, P. P (2021) Facies architecture and spatio-temporal depositional variability in the Pliocene Sandhan fluvial system, Kutch Basin, India. Journal of Earth System Science, 130(4): 237.
Lee, H. S., Chough, S. K (2006) Lithostratigraphy and depositional environments of the Pyeongan Supergroup (Carboniferous-Permian) in the Taebaek area mid-east Korea. Journal of Asian Earth Sciences, 26: 339-352.
Lopez- Gomez, J., Arche, A., Vargas, H., Marzo, M (2010) Fluvial architecture as a response to two-layer lithospheric subsidence during the Permian and Triassic in the Iberian Basin, eastern Spain. Sedimentary Geology, 223: 320-333.
Miall, A. D (2013) The Geology of Fluvial Deposits, Sedimentary Facies, Basin Analysis, and Petroleum Geology. 4th ed. Springer, Berlin.
Moussavi-Harami, R., Brenner, R. L (1990) Lower Cretaceous (Neocomian) fluvial deposits in eastern Kopet-Dagh Basin, northeastern Iran. Cretaceous Research, 11:163-174.
Moussavi-Harami, R., Mahboubi, A., Nadjafi, M., Brenner, R. L., Mortazavi, M (2009) Mechanism of calcrete formation in the Lower Cretaceous (Neocomian) fluvial deposits, northeastern Iran based on petrographic, geochemical data. Cretaceous Research, 30(5): 1146-1156.
Mueller, E. R., Pitlick, J (2014) Sediment supply and channel morphology in mountain river systems: 2. Single thread to braided transitions. Journal of Geophysical Research, Earth Surface, 119: 1516-1541.
Petit, F., Gol, F., Houbrechts, G., Assani, A. A (2005) Critical specific stream power in gravel-bed rivers. Geomorphology, 69: 92-101.
Poursoltani, M. R (2020) Architectural analysis of an Early Cambrian braided-river system on the north Gondwana margin: The lower sandstone of the Lalun Formation in the Shirgesht area, central Iran. Journal of African Earth Sciences, 171: 103935.
Reading, H. G., Collinson, J. D (1996) Clastic coastal. In: Reading, H.G., (Ed.), Sedimentary Environment and Facies. Black well Scientific Publication, Ltd Oxford, 154-231.
Retallack, G. J (1998) Core concepts of paleopedology. Quaternary International, 51-52, 203-212.
Salehi, M. A., Moussavi-Harami, R., Mahboubi, A., Fursich, F.T., Wilmsen, M., Heubeck, C (2018) A tectono-stratigraphic record of an extensional basin: the Lower Jurassic Ab-Haji Formation of east-central Iran. Swiss Journal of Geosciences, 111: 51-78.
Selley, R. C (1996) Ancient Sedimentary Environment and Their Sub-surface Diagenesis (4th edition). Routledge, London.
Seyrafian, A., Toraby, H (2005) Petrofacies and sequence stratigraphy of the Qom Formation (Late Oligocene-Early Miocene?), north of Nain, southern trend of central Iranian Basin. Carbonates and Evaporites, 20(1): 82-90.
Tucker, M. E (2001) Sedimentary Petrology (3ed edition): Blackwell science
Yousefi Yeganeh, B., Feiznia, S., Tom, A. J., Loon, V (2012) Sedimentary environment and palaeogeography of the Palaeocene–Middle Eocene Kashkan Formation, Zagros fold-thrust belt, SW Iran. Geologos, 18: 13-36.
Wilmsen, M., Fürsich, F. T., Seyed-Emami, K., Majidifard, M. R. (2021) The Upper Jurassic Garedu Red Bed Formation of the northern Tabas Block: elucidating Late Cimmerian tectonics in east-Central Iran. International Journal of Earth Sciences, 110(3): 767-790.