پتروگرافی و ژئوشیمی دولومیت های سازند الیکا در برش زال جلفا، شمال باختر ایران

نویسندگان

1 دانشجوی دکترا رسوب‌شناسی و سنگ‌شناسی رسوبی، دانشکده علوم‌پایه، دانشگاه آزاد اسلامی، واحد تبریز، تبریز، ایران

2 استادیار گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه آزاد اسلامی، واحد تبریز، تبریز، ایران

3 استادیار گروه زمین‌شناسی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران

چکیده

سازند الیکا در برش زال واقع در جنوب جلفا شامل دو بخش سنگ­آهکی و دولومیتی است. این سازند با ضخامتی در حدود 377 متر از 9 واحد مختلف رسوبی تشکیل شده است که دو واحد انتهایی آن (واحدهای 8 و 9) با ضخامتی در حدود 78 متر، به صورت کامل دولومیتی است. تبدیل بخش سنگ­آهکی به دولومیتی­های ضخیم لایه در این سازند به صورت تدریجی بوده و با حضور واحد سنگ­آهک دولومیتی متوسط لایه مشخص می­گردد. مطالعات پتروگرافی و آنالیز عنصری بخش دولومیتی این سازند نشان می­دهد که دولومیت­های این منطقه اکثراً از نوع اول و دولومیکرایت می­باشند. بلورهای دولومیت توسط سیالات دریایی در طی تدفین کم عمق و در شرایط نسبتاً احیایی شکل گرفته­اند و در طی فرایند دولومیتی شدن ترکیب این سیالات تغییر نکرده است. نتایج حاصل از آنالیز XRD در نمونه­های مختلف دولومیتی سازند الیکا حاکی از آن است که اغلب دولومیت­های مورد مطالعه نزدیک به حالت استوکیومتریک بوده و مقدار مول درصد MgCO3 آن­ها بین 7/46 تا 4/50 درصد است. توالی دولومیتی شده سازند الیکا با توجه به اندازه ریزبلورهای دولومیت، حضور ذرات کوارتز در حد سیلت و نوارهای استروماتولیت احتمالاً در یک محیط دریایی کم عمق (سوپراتایدال تا اینترتایدال) با شوری و تبخیر بالا نهشته شده است. حضور ااییدهای شعاعی و بافت­های اولیه رسوبی به صورت لامیناسیون، مقادیر پایین Fe و Mn و همچنین مقادیر بالای Sr و Na تاییدی بر شرایط فوق است. میزان بالای سدیم در این دولومیت­ها احتمالاً می­تواند ناشی از وجود کانی­های رسی بوده که حضور آن­ها توسط مطالعات SEM و XRD تایید شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Petrography and geochemnistary of the Elika Formation dolomites in Zal section, Julfa, NW Iran

نویسندگان [English]

  • M. Yaghoubi 1
  • A. Najafzadeh 2
  • A. Zohdi 3
  • R. Mahari 2
  • F. Khaleghi 2
1
2
3
چکیده [English]

Early to Middle Triassic carbonate sequences of Elika formation in Zal Section (South of Julfa, NW Iran), consist of two different lithology: limestone and dolomite. The thickness of this formation is about 377 m and contains nine different units. The two upper units (8 and 9) are mainly dolomites with thickness of 78 m. The transition between limestone and thick-bedded dolomite in this formation is gradual with the presence of medium-bedded dolomitic limestone lithology. Petrographic results and geochemical analysis clearly show that these dolomites are mainly type I (dolomicrite). Dolomite crystals formed in shallow burial environment (reduction conditions), which affected by marine fluids with little chemical change during dolomitization. The result of XRD analysis in different types of dolomites shows that most of the dolomites of the Elika formation are so close to stoichiometric state and the amount of Mol/Percent of MgCO3 in these dolomites are between 46.7 to 50.4. The Elika dolomites deposited in shallow marine environments (supratidal to intertidal) with high rate of evaporation and salinity, which led to form very fine dolomite along with some silt-sized quartz. The presence of ooid, primary sedimentary structures such as lamination, along with low amount of Fe and Mn and high amount of Na and Sr prove mentioned sedimentation situation. High amount of Na in these dolomites possibly indicate the presence of clay minerals, which identified by SEM and XRD studies.

کلیدواژه‌ها [English]

  • Elika Formation
  • Triassic
  • Dolomicrite
  • Stoichiometry
  • Shallow burial
  • Julfa
اخروی، ر.، ربانی، ا (1374) دولومیتی شدن بخش زیرین سازند الیکا. مجله علوم دانشگاه تهران، شماره 1، ص 111-98. 
ارزانی، ن (1392) ژئوشیمی رسوبی، انتشارات دانشگاه پیام نور، 316 ص.
اکبرنژاد، ج.، نجف­زاده، ع.، فرضعلی­زاده، ز (1394) بررسی فرایندهای دیاژنژ و تعیین مینرالوژی اولیه­ی سنگ­های کربناته سازند الیکای ­زیرین و میانی در منطقه­ی جلفا- شرقی ایران. اولین کنگره علمی پژوهشی توسعه و ترویج علوم کشاورزی ، منابع طبیعی و محیط زیست ایران، 292.
آدابی، م. ح (1383) ژئوشیمی رسوبی، انتشارات آرین زمین، 448 ص.
پورحیدر، ز.، آدابی، م. ح.، موسوی طسوج، م. ر.، صادقی، ع (1399) فرایندهای دیاژنزی و ویژگی­های ژئوشیمیایی نهشته­های سازند الیکا در تاقدیس قدمگاه در جنوب البرز مرکزی. نشریه علوم زمین خوارزمی، جلد 6، شماره 1، ص 82-55. 
جلیلیان، ع. م (1396) سنگ­نگاری، زمین­شیمی و تاریخچه دیاژنتیکی بخش دولومیتی سفیدار (تریاس بالایی) در منطقه فارس، جنوب ایران. نشریه رسوب­شناسی کاربردی، دوره 5، شماره 10، ص 96-81.
روحانی لکی، ع.، عاصمی، ف.، زهدی، ا (1397) ارتباط بین اندازه بلورهای دولومیت و ویژگی­های فیزیکی آن­ها به منظور مطالعات ژئومکانیکی مخازن دولومیتی. نشریه پژوهش نفت، دوره 28، شماره 98، ص 161-150.
زهدی، ا (1394) مدل دولومیتی شدن سازند الیکا در منطقه زنجان. نوزدهمین همایش انجمن زمین­شناسی ایران و نهمین همایش­ ملی زمین­شناسی دانشگاه پیام نور، ص 849-839.
ستوهیان، ف (1387) چینه­نگاری سکانسی سازند الیکا در برش تالش، البرز شرقی. مجله علوم دانشگاه تهران، دوره 34، شماره 1، ص 69-61.
شلالوند، م.، آدابی، م. ح.، زهدی، ا (1396) سنگ‌نگاری، زمین‌شیمی و مدل دولومیتی‌شدن سازند تله‌زنگ (پالئوسن پسین- ائوسن پیشین) در جنوب و جنوب باختر کرمانشاه. نشریه رسوب­شناسی کاربردی، دوره 7، شماره 13، ص 166-149.
طالبان، ن (1390) زیست­چینه­ای و سنگ­چینه­ای سازند الیکا در برش شهمیرزاد، شمال سمنان. پایان­نامه کارشناسی ارشد، سازمان زمین­شناسی و اکتشافات معدنی کشور.
عبدالهی، م.، حسینی، م (1375) نقشه زمین­شناسی 100000/1 جلفا، انتشارات سازمان زمین­شناسی و اکتشافات معدنی کشور.
فیاضی، ف (1384) پتروگرافی و ژئوشیمی دولومیت­های بخش میانی سازند الیکا در منطقه شهمیرزاد. نهمین همایش انجمن زمین­شناسی ایران، ص 552-538
قربانی، م (1381) دیباچه­ای بر زمین­شناسی اقتصادی ایران، انتشارات سازمان زمین­شناسی و اکتشافات معدنی کشور، ۶95  ص.
لطف­پور، م (1376) بررسی میکروفاسیس­ها و محیط­رسوبی و چینه­شناسی توالی­های بخش میانی و بالایی سازند الیکا در شرق البرز مرکزی. پایان­نامه کارشناسی­ارشد دانشگاه تربیت معلم تهران، 168 ص.
نبوی، م. ح (1355) دیپاچه­ای بر زمین­شناسی ایران، سازمان زمین­شناسی کشور، 109 ص.
وزیری، س. ح (1384) مطالعه سنگ­چینه­ای سازند الیکا در شمال خاوری جاجرم (البرز شرقی، زون تدریجی بینالود). مجله علوم پایه، شماره 15، ص 271-285.
یوسفی­راد، م.، خاموشی، ت.، شعبانیان، ر (1392) ژئوشیمی رسوبی مرز پرمین- تریاس در برش زال، جنوب جلفا. اولین همایش زمین­شیمی کاربردی ایران، دامغان.
Abbasii, N) 2015) Environmental impacts on the ichnofossil diversity of the lower part of the Elika Formation (Lower Triassic), Moro Mountain, NW Iran. Iranian Journal of Science and Tecnology, 39: 273-280.
Adabi, M. H (2009) Multistage dolomitization of Upper Jurassic Mozduran Formation, Kopet-Dagh basin, N. E. Iran. Carbonates and Evaporites, 24 (1): 16-32.
Adam, J., Al-Aasm, I. S (2017) Petrologic and geochemical attributes of calcite cementation, dolomitization and dolomite recrystallization: an example from the Mississippian Pekisko Formation, west-central Alberta. Bulletin of Canadian Petroleum Geology, 65 (2): 235-261.
Adams, A., Diamond, L.W., Aschwanden, L (2019) Dolomitization by hypersaline reflux into dense groundwaters as revealed by vertical trends in strontium and oxygen isotopes: upper Muschelkalk, Switzerland. Sedimentology, 66 (1): 362-390.
Adams, J. E., Rhodes, M. L (1960) Dolomitization by seepage refluxoin. American Association of Petroleum Geologists Bulletin, 44: 1912-192.
Akçay, M., Özkan, H. M., Spiro, B., Wilson, R. Hoskin, P. O (2003) Geochemistry of a high-T hydrothermal dolostone from the Emirli (Ödemiş, western Turkey) Sb-Au deposit. Mineralogical Magazine, 67: 671-688.
Al-Aasm, I. S., Packard, J. J (2000) Stabilization of early-formed dolomite: a tale of divergence from two Mississippian dolomites. Sedimentary Geology, 131: 97-108.
Amthor, J. E, Friedman, G. M (1991) Dolomite-rock textures and secondary porosity development in Ellenburger Group carbonate (Lower Ordovician), west Texas and southern New Mexico. Sedimentology, 68: 343- 362.
Behrens, E. W., Land, L. S (1972) Subtidal Holocene dolomite, Baffin Bay, Texas. Journal of Sedimentary Research, 42 (1): 155-161.
Bialik, O. M., Wang, X., Zhao, S., Waldmann, N. D., Frank, R., Li, W (2018) Mg isotope response to dolomitization in hinterlandattached carbonate platforms: Outlook of δ26Mg as a tracer of basin restriction and seawater Mg/Ca ratio. Geochimica et Cosmochimica Acta, 235: 189-207.
Blatt, H., Middleton, G. V. Murray, R. C (1980) Origin of Sedimentary Rocks. Second Edition., Prentice-Hall, New Jersey, 634 p.
Braithwite, C. J. R., Rizzi, G. Darke, G (2004) The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geological Societyof London, 235: 413 p.
Budd, D. A (1997) Cenozoic dolomites of carbonate islands: their attributes an origin. Earth Science Review, 42: 1-47.
Coimbra, R., Horikx, M., Huck, S., Heimhofer, U., Immenhauser, A., Rocha, F., Dinis, J., Duarte, L. V (2017) Statistical evaluation of elemental concentrations in shallow-marine deposits (Cretaceous, Lusitanian Basin). Marine and Petroleum Geology, 86: 1029-1046.
Dickson, J. A. D (1965) A modified staining technique for carbonate in thin section, Nature, 205: 587.
Diloreto, Z. A., Garg, S., Bontognali, T. R. R., Dittrich, M (2021) Modern dolomite formation caused by seasonal cycling of oxygenic phototrophs and anoxygenic phototrophs in a hypersaline sabkha. Scientific Reports, 11: 4170.
Du, Y., Fan, T., Machel, H. G., Gao, Z (2018) Genesis of Upper Cambrian-Lower Ordovician dolomites in the Tahe Oilfield, Tarim Basin, NW China: Several limitations from petrology, geochemistry, and fluid inclusions. Marine and Petroleum Geology, 91: 43-70.
Flugel, E (2010) Microfacies of Carbonate Rocks, Analysis, Interpretation and Application. Springer-Verlag, Berlin, 976 p.
Folk, R. L., Land L. S (1975) Mg/Ca ratio and salinity: Two controls over crystallization of dolomite. American Association of Petroleum Geologists, 59: 60-68.
Fridman, G. M (1965) Terminology of crystallization textures and fabrics in sedimentary rocks Journal of Sedimentary Research, 35: 643-655.
Gasparrini, M., Bechstadt, T., Boni, M (2006) Massive hydrothermal dolomite in the Southwestern Cantabrian Zone (Spian) and their relation to the Late Variscan evolution. Marine and Petroleum Geology, 23: 543- 568.
Geske, A., Zorlu J., Richter, D. K., Buhl, D., A., Niedermayr, Immenhauser, A (2012) Impact of diagenesis and low grade metamorphosis on isotope (δ26Mg, δ13C, δ18O and 87Sr/86Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomites. Chemical Geology, 332-333: 45-64.
Greeg, J. M, Sibley, D. F (1984) Epigenetic dolomitization and the origin of xenotopic dolomite texture. Journal of Sedimenary Petrology, 54: 908- 931.
Gregg, J. M., Shelton, K. L (1990) Dolomitization and dolomite neomorphism in the back reef facies of the Bonneterre and Davis formations Cambrian, Southeastern Missouri. Journal of Sedimentary Research, 60 (4): 549-562.
Győri, O., Haas, J., Hips, K., Lukoczki, G., Budai, T., Demény, A., Szőcs, E (2020) Dolomitization of shallow-water, mixed silicilastic-carbonate sequences The Lower Triassic ramp succession of the Transdanubian Range, Hungary. Sedimentary Geology, 395- 105549.
Higgins, J. A., Blattler, C. L., Lundstrom, E. A., Santiago-Ramos, D. P., Akhtar, A. A., Curger Ahm, A. S., Bialik, O. M., Holmden, C., Bradbury, H., Murray, S. T., Swart, P. K (2018) Mineralogy, early marine diagenesis, and the chemistry of shallow water carbonate sediments. Geochimica et Cosmochimica Acta, 220: 512-534
Hood, S. D., Nelson, C. S., Kamp, P. J. J (2004) Burial dolomitisation in anon-tropical carbonate petroleum reservoir: the Oligocene Tikorangi Formation, Taranaki Basin, New Zealand. Sedimentary Geology, 172: 117-138.
Hou, M. C., Jiang, W. J., Xing, F. C., Xu, S. L., Liu, X. C., Xiao, C (2016) Origin of dolomites in the Cambrian (upper 3rd-Furongian) formation, southeastern Sichuan Basin, China. Geofluids, 16(5): 856-876.
Humphrey, J. D (1988) Late Pleistocene mixing-zone dolomitization, southeastern Barbadose, West Indies. Sedimentology, 35: 327-348.
Illing, L. V., Taylor, J. C. M (1993) Penecontemporaneous dolomitization in Sabkha Faishakh, Qatar- evidence from changes in the chemistry of the interstitial brines. Journal of Sedimentary Petrology, 62: 1042-1048.
Jiang, L., Cai, C. F., Worden, R. H., Li, K. K., Xiang, L (2013) Reflux dolomitization of the Upper Permian Changxing Formation and theLower Triassic Feixianguan Formation, NESichuan Basin, China. Geofluids, 13 (2): 232-245.
Kaczmarek, S. E., Sibley, D. F (2011) On the evolution of dolomite stoichiometry and cation order during high temperature synthesis experiments: An alternative model for the geochemical evolution of natural dolomites.
Journal of Sedimentary Geology, 240 (1-2): 30-40.
Kırmacı, M. Z (2008) Dolomitization of the late Cretaceous-Paleocene platform carbonates, Gölköy (Ordu), Eastern Pontides, NE Turkey. Sediment. Geol, 203: 289-306.
Kirmaci, M. Z (2013) Origin of dolomite in the Late Jurassic platformcarbonates, Bolkar Mountains, Central Taurides, Turkey. Petrographic and geochemical evidence. Chemie der Erde-Geochem. 73(3):383–398
Korte, C., Jasper, T., Kozur, H. W., Veizer, J (2006) 87Sr/86Sr record of Permian seawater. Paleogeography Paleoclimatology, Palaeoecology, 240: 89-107.
Land, L. S (1973) Contemporaneous dolomitization of Middle Pleistocene reefs by meteoric water. Bulletin of Marine Science, 23, 64-92.
Land, L. S (1980) The isotope and trace element geochemistry of dolomite: the state of the art: in Zenger, D. H., Dunham, J. B., and Ethington, R. L., (eds.). Concepts and Models of Dolomitization, 28: 87-110.
Land, L. S (1985) The origin of massive dolomite Summary and Suggestion. Journal of Geological Education, 33(2): 112-125.
Land, L. S )1983( The application of stable isotopes to the studies of the origin of dolomites and to problems of diagenesis of clastic sediments. In M. A. Arthur T. F. Anderson, I. R. Kaplan, J. Veizer and L. S. Land (Eds.), Stable isotopes in sedimentary geology. SEPM Short Course, 10: 1-22.
Land, L. S., Hoops, G. K (1973) Sodium in carbonate sedimentsand rocks: a possible index to the salinity of diageneticsolution. Journal of Sedimentary Petrology, 43: 614- 617.
Last, F. M., Last, W. M., Halden, N. M (2012) Modern and late Holocene dolomite formation: Manito Lake, Saskatchewan, Canada. Sedimentary Geology, 281: 222-237.
Lee, Y. I., Friedman, G. M (1987) Deep-burial dolomitization in the Lower Ordovician Ellen Burger Group carbonates in west Texas and southeastern New Mexico. Journal of Sedimentary Research, 57: 544-557.
Lu, F. H., Meyers, W. J (1998) Massive dolomitization of a late Miocene carbonate platform: a case of mixed evaporative brines with meteoric water, Nijar, Spain. Sedimentology, 45: 263-277.
Lukoczki, G., Hass, J., Gregg, J. M. Machel, H. G., Kele, S., John, M. C (2019) Multi-phase dolomitization and recrystallization of Middle Triassic shallow marine peritidal carbonates from the Mecsek Mts. (SW Hungary), as inferred from petrography, carbon, oxygen, strontium and clumped isotope data. Marine and Petroleum Geology, 101: 440-458.
Machel, H. G., Anderson, J. H (1989) Pervasive subsurface dolomitization of the Nisku Formation in central Alberta. Journal of Sedimentary Research, 59: 891–911.
Major, R. P (1984) The Midway Atoll Coral Cap: meteoric diagenesis, amplitude of sealevel fluctuation and dolomitization. Unpublished Ph. D. Thesis, Brown University, 133 p.
Mazzullo, S. J (1992) Geochemical and neomorphic alteration of dolomite. A Review, Carbonates and Evaporites, 7: 21- 37.
Mazzullo, S. J (2000) Organogenic Dolomitization in Peritidal to Deep-Sea Sediments. Journal of Sedimentary Research, 70 (1): 10-23.
McCormack, J., Bontognali, T. R. R., Immenhauser, A., Kwiecien, O (2018) Controls on Cyclic Formation of Quaternary Early Diagenetic Dolomite. Geophysical Research Letters, 45(8): 3625-3634.
Mullins, H. T., Dix, G. R., Gardulski, A. F., Land. L. S (1988) Neogene deep-water dolomite from the Florida- Bahama Platform. In: Shukla V J, Barker P A (Eds.), Sedimentology and Geochemistry of Doloston, Society of Economic Paleontologists and Mineralogists, Special Publications, 43: 235- 243.
Nasir, S., Al-Saad, H., Alsayigh, A., Weidlich, O (2008) Geology and petrology of the Hormuz dolomite, Infra-Cambrian: Implications for the formation of the salt-cored Halul and Shraouh islands, Offshore, State of Qatar. Journal of Asian Earth Sciences, 33: 353-365.
Partoazar, H (2002) Permian-Triassic boundary conodonts from Julfa-Abadeh Belt along Northwest and Central Iran. Permophiles, 41: 34-40.
Rao, C. P (1996) Modern Carbonates, tropical, temperate, polar: introduction to sedimentology and geochemistry: Arts of Tasmania, Howrah, 206 p.
Sabagh-Bajestani, M., Mahboubi, A., Al-Aasm, I., Moussavi-Harami, R., Nadjafi, M (2018) Multistage dolomitization in the Qal’eh Dokhtar formation (Middle-Upper Jurassic), Central Iran: petrographic and geochemical evidence. Geological Journa, 53 (1): 22-44.
Saller, A. H (1984) petrologic and geochemical constrains on origin of subsurface dolomite, Eniwetak Atoll: an example of dolomitization by normal seawater. Geology, 12: 217- 220.
Sass, E., Bein, A (1988) Dolomites and salinity; a comparative geochemical study. In: Shukla, V., Baker, P. A. (Eds.), Sedimentology and geochemistry of dolostones, based on a symposium: Special Publication, SEPM, 43: 223-233.
Schuster, A. M., Wallace, M. W., Hood, A. V. S., Jiang, G (2018) The Tonian Beck Spring Dolomite: Marine dolomitization in a shallow, anoxic sea. Sedimentary Geology, 368: 83-104.
Sibley, D. F., Gregg, J. M (1987) Classification of dolomite rock textures. Journal of Sedimentary Research, 57: 967–975
Suzuki, Y., Iryu, Y., Inagaki, S., Yamata, T., Aizawa, S. and Budd, D.A (2006) Origin of atol dolomites distinguished by geochemistry and crystal chemistry, Kita-daito-jima, northern Philippine Sea. Sedimentary Geology, 183: 181-202.
Teichert, C., Kummel, B., Sweet, W. C (1973) Permian-Triassic strata, Kuh-e-Ali Bashi, northwestern Iran. Bulletin of the Museum of Comparative Zoology, 145: 359-472.
Tucker, M. E., Wright, V. P (1990) Carbonate Sedimentology. Black well Scientific Oxford, 482 p.
Tucker, M. E (1991) Sedimentary Petrology: an introduction to the origin of sedimentary rocks. Blak well scientific publication, 260 p.
Turpin, M., Nader, F. H., Kohler, E (2012) Empirical calibration for dolomite stoichiometry calculation: Application on Triassic Muschelkalk-Lettenkohle carbonates (French Jura). Oil and Gas Science and Tech-nology, 67: 77-95.
Usdowski, E (1989) Synthesis of dolomite and magnesite at 60 °C in the system Ca2+-Mg2+-Co32−-C122−H2O. Naturwissenschaften, 76: 374-375.
Vahrenkamp, V. C., Swart, P. K (1994) Late Cenozoic dolomites of the Bahamas: metastable analogues for the genesis of ancient platform dolomites. In: Purser B, Tucker M, Zenger D (Eds.) Dolomites: a volume in Honour of Dolomieu, International Association of Sedimentologists, Special Publication, 133-153.
Veizer, J (1983) Trace elements and stable isotopes in sedimentary carbonates, In: Reeder, R. J. (Ed.), Carbonates: mineralogy and chemistry. Reviews in Mineralogy, 11: 265-299.
Warren, J (2000) Dolomite: occurrence, evolution and economically important associations. Earth-Science Reviews, 52 (1): 1-81.
Wenk, H. R., Hu, M., Fraisia, S (1993) Partially disorderd dolomite: microstructural characterization of Abu Dhabi sabkha carbonates. American Mineralogy, 78: 769-774.
Whitaker, F. F., Smart, P. L., Vahrenkamp, V. C., Nicholson, H., Wogelius, R. A (1994) Dolomitization by near-normal seawater? Field evidence from the Bahamas. In: Purser B, Tucker M, Zenger D (eds), Dolomites, International Association of Sedimentologists Special Publication, 21: 111-132.
Wright, P. M (1981) Algal aragonite-encrusted pisoids from a Lower Carboniferous schizohaline lagoon, Journal of Sedimentary Research, 51 (2): 479-489.
Zohdi, A., Moallemi, S. A., Moussavi-Harami, R., Mahboubi, A., Richter, D. K., Geske, A., Nickandish, A. A., Immenhauser, A (2014) Shallow burial dolomitization of an Eocene carbonate platform, southeast Zagros Basin, Iran, GeoArabia, 19:17-54.