چارچوب محیط رسوبگذاری و شرایط پالئواکولوژیکی سازند سرگلو )ژوراسیک میانی( در ناحیه اورمان،کرمانشاه

نویسندگان

1 دانشجوی کارشناسی‌ارشد رسوب‌شناسی و سنگ‌شناسی رسوبی، دانشگاه تحصیلات تکمیلی علوم‌پایه زنجان، زنجان، ایران

2 استادیار گروه علوم‌زمین، دانشکده علوم‌زمین، دانشگاه تحصیلات تکمیلی علوم‌پایه زنجان، زنجان، ایران

3 استادیار گروه زمین‌شناسی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران

چکیده

بر اساس آنالیز رخساره­ای و داده­های رسوب­شناسی صحرایی و ادغام آن با محاسبات آماری ، 5 میکروفاسیس (MF) و 2 رخساره­سنگی (LF) در نهشته­های سازند سازند سرگلو (ژوراسیک میانی) در زیر‌پهنه‌ لرستان شناسایی شده است. توالی رخساره­ای شناسایی شده دلالت بر محیط رسوبی اینتراشلفی و بخش عمیق کف حوضه متشکل از کمربندهای رخساره­ای حوضه/ شلف خارجی، شیب و شلف میانی است که به صورت دوره­ای با جریانات توفانی و توربیدایتی همراه بوده است. توالی رخساره­ای رسوبی شناسایی شده نشان می­دهد که در میان عوامل اصلی کنترل کننده رخساره­ای، دو عامل میزان اکسیژن و جریانات داخل حوضه­ای مهم­ترین عوامل تاثیرگذار بر روی نهشته­های سازند سرگلو می­باشند. مطالعه آماری بر روی توزیع آماری فراوانی اندازه و کج‌شدگی مرتبط با ریزرخساره‌های حاوی پوزیدونیا بخصوص ریزرخساره وکستون– پکستون دارای پوزیدونیا (MF-G) حاکی از شکل­گیری سازند سرگلو در کمربندهای رخساره‌ای کم انرژی و عمیق (حوضه/ شلف خارجی)، پرانرژی و کم‌عمق شیب حوضه و شلف میانی می‌باشد. رخداد گسترده توالی‌های حاوی گونه‌های پوزیدونیا به میزان تأمین مواد مغذی و نرخ تأمین اکسیژن توسط جریانات دریایی مرتبط شده است. الگوی توزیع فراوانی پوزیدونیا در ریزرخساره وکستون - پکستون دارای پوزیدونیا منجر به تجزیه این ریزرخساره به چهار نوع زیررخساره (MF-G1, MF-G2, MF-G3, MF-G4) شده است که هریک از آن‌ها نشان‌دهنده الگویی از کج­شدگی‌های آماری از لحاظ فراوانی اندازه پوزیدونیا و تغییر در جایگاه کمربندهای رخساره‌ای است. در این خصوص، کج‌شدگی چپگرد بیانگر شیب حوضه، کج‌شدگی راستگرد بیانگر شلف میانی، و کج‌شدگی بایمدال بیانگر حوضه/ شلف خارجی است.

کلیدواژه‌ها


عنوان مقاله [English]

Depositional environment farmework and and palaecological analysis of the Sargelu Formation (Middle Jurassic) in Hawraman area Kermanshah

نویسندگان [English]

  • M. Imani seginsara 1
  • A. Bayet-Goll 2
  • M. Daraei 2
  • M. Esanejad Kachavi olia 1
  • A. Zohdi 3
  • J. Rabbani 3
چکیده [English]

According to facies analysis and sedimentological data integrated with statistical analysis, five microfacies (MF) and two lithofacies (LF) are identified in the Sargelu Formation (Middle Jurassic), exposed in the Lurestan sub-basin. The facies associations indicate the presence of three sunenvironments including the basin / shelf, slope and middle shelf facies belts with pelagic/hemipelagic sedimentation, periodically influenced by depositions of turbidites and tempestites. The sequence of identified sedimentary facies shows that among the main factors controlling the facies character, two factors of oxygen content and intra-basinal flows are the most important ones affecting the deposits of the Sargelu Formation. Statistical investigation on the distribution of size and skewness of Posidonia-containing microfacies, especially Posidonia Wackestone – Packstone (MF-G) also confirms that the Sargelu Formation deposited in a low-energy basin–outer shelf setting and high energy slope and middle shelf facies belts. The widespread occurrence of intervals containing Posidonia species was linked to nutrient supply and oxygen supply by marine currents. Differences in the Posidonia distribution pattern in the Wackestone – Packstone microfacies (MF-G) led to the decomposition of this microfacies into four subfacies (MF-G1, MF-G2, MF-G3, MF-G4), which differ in the patterns of statistical skewness and the position of sub-facies along the depositional profile. In this regard, the left-skewed distribution points toward the slope, whereas the right-skewed distribution points to the middle shelf, and the bimodal-skewed distribution indicates the outer basin/shelf subenvironment.

کلیدواژه‌ها [English]

  • Sargelu Formation
  • Middle Jurassic
  • Intra-Shelf basin
  • Posidonia
زهدی، ا.، ربانی، ج (1398) ساز و کار تشکیل کنگلومراهای درون حوضه­ای: مطالعه موردی در تریاس و ژوراسیک منطقه زنجان، دوفصلنامه رسوب­شناسی کاربردی، دوره 7، شماره 14، ص  57-70.
شرفی, م.، مصدق، ح.، بایت­گل، ئ.، احمدی، ل (1399) رخساره­ها و محیط­رسوبی سازند مبارک در ناحیه کهنگ، البرز مرکزی،  دوفصلنامه رسوب­شناسی کاربردی، دوره 8، شماره 16، ص 160-178.
موسوی­زاده، س (1398) لایه‌های قرمز اقیانوسی کرتاسه، مدلی برای بررسی تغییرات سریع شرایط ژئوشیمیایی در محیط‌های رسوبی عمیق، دوفصلنامه رسوب­شناسی کاربردی، دوره 7، شماره 14، ص 34-45.
نصیری، ی.، بایت­گل، ئ.، محبوبی، ا.، موسوی­حرمی، س.، مصدق، ح (1398) کاربرد زنجیره مارکوف در تفـسیر توالی­های رسوبی، مطالعه موردی نهشته­های کربناته سازند مبارک (البرز خاوری، شمال ایران). دوفصلنامه رسوب شناسی کاربردی، دوره 7، شماره 13، ص 77-93.
Abdula, R (2010) Petroleum source rock analysis of the Jurassic Sargelu Formation, northern Iraq (Doctoral dissertation, Colorado School of Mines). 180p.
Abdula, R. A., Balaky, S. M., Nurmohamadi, M. S., Piroui, M (2015) Microfacies analysis and depositional environment of the Sargelu Formation (Middle Jurassic) from Kurdistan Region, northern Iraq. Donnish Journal of Geology and Mining Research, 1(1): 1-26.
Aberhan, M (1994) Guild-structure and evolution of Mesozoic benthic shelf communities. Palaios, 19: 516-545.
Agard, P., Omrani, J., Jolivet, L., Mouthereau, F (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International journal of earth sciences, 94(3): 401-419.
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Wortel, R. (2011) Zagros orogeny: a subduction-dominated process. Geological Magazine, 148(5-6): 692-725.
Alavi, M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American journal of science, 304(1): 1-20.
Al-Husseini, M. I (2000) Origin of the Arabian Plate structures: Amar collision and Najd rift. GeoArabia, 5(4): 527-542.
Alsharhan, A. S., & Magara, K (1994) The Jurassic of the Arabian Gulf Basin-facies, depositional setting and hydrocarbon habitat, in Embry, A.F., B. Beauchamp, and D.J. Glass, eds., Pangea-global environments and resources. Canadian Society of Petroleum Geologists, Memoir, 17: 397-412.
Bayet-Goll, A., Chen, J., Moussavi-Harami, R., Mahboubi, A. (2015) Depositional processes of ribbon carbonates in middle Cambrian of Iran (Deh-Sufiyan Formation, Central Alborz). Facies, 61: 9. https://doi.org/10.1007/s10347-015-0436-6.
Bayet-Goll, A., Monaco, P. M., Mahmudy-Gharaei, M.H., Jalili, F (2016a) Depositional environments and ichnology of Upper Cretaceous deep-marine deposits in the Sistan Suture Zone, Birjand, Eastern Iran. Cretaceous Research, 60: 28-51.
Bayet-Goll, A., Myrow, P. M., Aceñolaza, G. F., Moussavi-Harami, R., Mahboubi, A (2016) Depositional controls on the ichnology of Paleozoic wave-dominated marine facies: new evidence from the Shirgesht Formation, central Iran. Acta Geologica Sinica, 90 (5): 1572-1597.
Bayet-Goll, A., Nazarian Samani, P., Neto de Carvalho, C., Monaco, P., Khodaie, N.,
Morad Pour, M., Kazemeini, H., Zareiyan, M. H (2017) Sequence stratigraphy and ichnology of Early Cretaceous reservoirs, Gadvan formation in southwestern Iran. Marine and Petroleum Geology, 81: 294–319.
Bayet-Goll, A., Shirezadeh-Esfahani, F., Daraei, M., Monaco, P., Sharafi, M., Akbari Mohamadi, A (2018a) Cyclostratigraphy across a Mississippian carbonate ramp in the Esfahan-Sirjan Basin, Iran: implications for the amplitudes and frequencies of sealevel fluctuations along the southern margin of the Paleotethys. International Journal of Earth Sciences, 107: 2233–2263.
Bayet-Goll, A., De Carvalho, C. N., Daraei, M., Monaco, P., Sharafi, M (2018b) Sequence stratigraphic and sedimentologic significance of the trace fossil rhizocorallium in the upper triassic nayband formation, Tabas block, Central Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 491: 196–217.
Bayet-Goll, A., Daraei, M., Taher, S. P. M., Etemad-Saeed, N., de Carvalho, C. N., Zandkarimi, K., and Nasiri, Y (2020) Variations of the trace fossil Zoophycos with respect to paleoenvironment and sequence stratigraphy in the Mississippian Mobarak Formation, northern Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 551: 109754.
Bayet-Goll, A., Daraei, M., and Imani-Seginsara, M (2022) Paleogeographic reconstruction and sequence architecture of the middle-upper Jurassic successions of Hawraman Basin (NW Iran): Implications for tectono-depositional processes of the northeastern passive margin of the Arabian Plate. Geological Journal. In press. https://doi.org/10.1002/gj.4407.
Bellen, R. V., Dunnington, H. V., Wetzel, R., Morton, D. M (1959) Lexique Stratigraphique International Asia. Fascicule, 10a, Iraq, Paris.]
Beydoun, Z. R., Clarke, M. H., Stoneley, R (1992) Petroleum in the Zagros basin: a late tertiary foreland basin overprinted onto the outer edge of a vast hydrocarbon-rich paleozoic-mesozoic passive-margin shelf: chapter 11.
Caswell, B. A., Coe, A. L., Cohen, A. S (2009) New range data for marine invertebrate species across the early Toarcian (Early Jurassic) mass extinction. Journal of the Geological Society, 166(5): 859-872
Caswell, B. A., & Coe, A. L (2013) Primary productivity controls on opportunistic bivalves during Early Jurassic oceanic deoxygenation. Geology, 41(11): 1163-1166.
Dunham, R. J (1962) Classification of carbonate rocks according to depositional textures.
Etter, W (1996) Pseudoplanktonic and benthic invertebrates in the Middle Jurassic Opalinum Clay, northern Switzerland. Palaeogeography, Palaeoclimatology, Palaeoecology, 126(3-4): 325-341.
Flores, J. A., Filippelli, G. M., Sierro, F. J., Latimer, J. C (2012) The “White Ocean” hypothesis: a late Pleistocene Southern Ocean governed by coccolithophores and driven by phosphorus. Frontiers in microbiology, 3: 233.
Flügel, E (2012) Microfacies analysis of limestones. Springer Science & Business Media.
Fürsich, F. T., Oschmann, W., Jaitly, A. K., Singh, I. B. (1991). Faunal response to transgressive-regressive cycles: example from the Jurassic of western India. Palaeogeography, Palaeoclimatology, Palaeoecology, 85(3-4): 149-159.
Jach, R (2007) Bositra limestones-a step towards radiolarites: case study from the Tatra Mountains. In Annales Societatis Geologorum Poloniae, 77: 161-170.
Jassim, S. Z., Buday, T (2006) Late Toarcian-Early Tithonian (Mid-Late Jurassic) Megasequence AP7, chapter 10. Geology of Iraq, first edition: Brno, Czech Republic, Prague and Moravian Museum, 117-123.
Johnson, M. P., White, M., Wilson, A., Würzberg, L., Schwabe, E., Folch, H., Allcock, A. L (2013) A vertical wall dominated by Acesta excavata and Neopycnodonte zibrowii, part of an undersampled group of deep-sea habitats. PloS One, 8(11): 79917.
Leonowicz, P (2016) Nearshore transgressive black shale from the Middle Jurassic shallow-marine succession from southern Poland. Facies, 62(2):16.
Lopez Correa, M., Freiwald, A., Hall-Spencer, J., Taviani, M (2005) Distribution and habitats of Acesta excavata (Bivalvia: Limidae) with new data on its shell ultrastructure. In Cold-water corals and ecosystems (pp. 173-205). Springer, Berlin, Heidelberg.
Molina, J. M., Reolid, M., Mattioli, E (2018) Thin-shelled bivalve buildup of the lower Bajocian, South Iberian paleomargin: development of opportunists after oceanic perturbations. Facies, 64(3): 1-17.
Molnar, M (2006) Tertiary development of the Zagros Mountains. Earth History. Geology, 418 (9).
Murris, R. J (1981) Middle East—Stratigraphic Evolution and Oil Habitat. AAPG Bulletin, 65(7): 1358-1358.
Navarro, V., Molina, J. M., Ruiz-Ortiz, P. A (2009) Filament lumachelle on top of Middle Jurassic oolite limestones: event deposits marking the drowning of a Tethysian carbonate platform (Subbetic, southern Spain). Facies, 55(1): 89-102.
Nasiri, Y., Bayet-Goll, A., Mahboubi, A., Moussavi-Harami, R (2020) Paleoenvironmental control on trace fossils across a Mississippian carbonate ramp succession, Mobarak
Formation, east of Central and Eastern Alborz, Iran. Journal of African Earth Sciences, 165: 103800.
Negra, M. H., Zagrarni, M. F., Hanini, A., Strasser, A (2011) The filament event near the Cenomanian-Turonian boundary in Tunisia: filament origin and environmental signification. Bulletin de la Société Géologique de France, 182(6): 507-519.
Parrish, J. T (1993) Climate of the supercontinent Pangea. The Journal of Geology, 101(2): 215-233.
Parrish, J. T., Curtis, R. L (1982) Atmospheric circulation, upwelling, and organic-rich rocks in the Mesozoic and Cenozoic eras. Palaeogeography, palaeoclimatology, palaeoecology, 40(1-3): 31-66.
Pomar, L., Molina, J. M., Ruiz-Ortiz, P. A., & Vera, J. A (2019) Storms in the deep: Tempestite-and beach-like deposits in pelagic sequences (Jurassic, Subbetic, South of Spain). Marine and Petroleum Geology, 107: 365-381.
Rivas, V., Rix, K., Frances, E., Cendrero, A., Brunsden, D (1997) Geomorphological indicators for environmental impact assessment: consumable and non-consumable geomorphologicalresources. Geomorphology, 18(3-4): 169-182.
Röhl, H. J., Schmid-Röhl, A., Oschmann, W., Frimmel, A., Schwark, L (2001) The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 165(1-2): 27-52.
Sharafi, M., Ashuri, M., Mahboubi, A., & Moussavi-Harami, R (2012) Stratigraphic application of Thalassinoides ichnofabric in delineating sequence stratigraphic surfaces (Mid-Cretaceous), Kopet-Dagh Basin, northeastern Iran. Palaeoworld, 21: 202–216.
Sharafi, M., Rodríguez-Tovar, F. J., Janočko, J., Bayet-Goll, A., Mohammadi, M., & Khanehbad, M (2021a) Environmental significance of trace fossil assemblages in a tide‒wave-dominated shallow-marine carbonate system (LowerCretaceous), northern Neo-Tethys margin, Kopet-Dagh Basin, Iran. International Journal of Earth Sciences. doi:10.1007/s00531-021-02101-0.
Sharafi, M., Rodríguez-Tovar, F. J., Bayet-Goll, A., Richiano, S (2021b) Ichnofabric analysis of shallow to deep marine
Carboniferous sediments, from the southern Paleotethys margin, Alborz Basin (northern Iran): approaching autogenic and allogenic environmental controls, Historical Biology.
Sharland, P. R., Archer, R., Casey, D. M., Davies, R. B., Hall, S. H., Heward, A. P., Simmons, M. D (2001) Sequence stratigraphy of the Arabian Plate. GeoArabia, 2(37): 1.
Stoneley, R (1990) The Middle East basin: a summary overview. Geological Society, London, Special Publications, 50(1): 293-298.
Tavani, S., Parente, M., Vitale, S., Iannace, A., Corradetti, A., Bottini, C., Mazzoli, S (2018) Early Jurassic rifting of the Arabian passive continental margin of the Neo‐Tethys. Field evidence from the Lurestan region of the Zagros fold‐and‐thrust belt, Iran. Tectonics, 37(8): 2586-2607.
Tomašových, A., Schlögl, J., Michalík, J., Donovalová, L (2020) Non-condensed shell beds in hiatal successions: instantaneous cementation associated with nutrient-rich bottom currents and high bivalve production. Italian Journal of Geosciences, 139(1): 76-97.
van Erkom Schurink, C., & Griffiths, C. L (1993) Factors affecting relative rates of growth in four South African mussel species. Aquaculture, 109(3-4): 257-273.
Wignall, P. B (1993) Distinguishing between oxygen and substrate control in fossil benthic assemblages. Journal of the Geological Society, 150(1): 193-196.
Wrobel-Daveau, J. C., Ringenbach, J. C., Tavakoli, S., Ruiz, G. M., Masse, P., de Lamotte, D. F (2010) Evidence for mantle exhumation along the Arabian margin in the Zagros (Kermanshah area, Iran). Arabian Journal of Geosciences, 3(4): 499-513.
Ziegler, M. A (2001) Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia 6 (3): 445-504.