بازسازی محیط رسوب گذاری نهشته‌های میکروبیالی سازند نجمه به سن ژوراسیک بالایی در منطقه پاوه کرمانشاه

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد رسوب‌شناسی و سنگ‌شناسی رسوبی، دانشگاه تحصیلات تکمیلی علوم‌پایه زنجان، زنجان، ایران

2 استادیار دانشکده علوم زمین، دانشگاه تحصیلات تکمیلی علوم پایه زنجان، زنجان، ایران

3 استادیار گروه زمین‌شناسی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران

چکیده

سازند نجمه با تنوعی از ساختار‌های میکروبیالی توسط یک ناپیوستگی فرسایشی بر روی شیل‌ها و کربنات‌های تیره‌رنگ سرگلو قرار گرفته است. گذر از سازند سرگلو به سن ژوراسیک میانی به سازند نجمه به سن ژوراسیک بالایی نشان‌دهنده‌ یک تغییر ناگهانی در نوع محیط رسوب­گذاری است، بطوری­که محیط از یک اینتراشلف با غلبه شیل سیاه غنی از ماده آلی و آهک‌های پلاژیک به یک محیط رمپ کم‌عمق با غلبه رسوبات میکروبیالی تغییر یافته است. این تغییر محیط که در پی یک پسروی آب دریا و بعد از یک انقطاع در رسوب­گذاری ایجاد شده است، با شواهدی از جمله بِرِش‌های اینتراکلستی، فابریک‌های فنسترال، بلورهای دروغین تبخیری، و ساختارهای متنوع میکروبی همراه است که نشان‌دهنده سیطره شرایط اقلیمی گرم و خشک با شوری بیش از حد آّب دریا همراه با تنش‌های محیطی در ژوراسیک پسین است. مجموعه رخساره‌های سازند نجمه شامل پنچ میکروفاسیس و دو رخساره سنگی  می‌باشد که دربرگیرنده کمربندهای رخساره­ای فراجزرومدی، بین جزرومدی و زیر جزرومدی است. براساس تقسیم‌بندی ماکروفابریک‌ها، رسوبات میکروبیالی سازند نجمه شامل ترمبولیت و استروماتولیت است. توالی رسوبی این سازند غالباً از استروماتولیت‌ تشکیل یافته است که خود شامل دو نوع مسطح و گنبدی است. این استروماتولیت‌ها دارای پنج نوع لامینه‌بندی (میکروفابریک) هستند که بیشترین نوع لامینه‌بندی، به صورت لامینه موازی میکرایت با اسپارایت می‌باشد. استروماتولیت‌ها در یک محیط فراجزرمدی تا بین جزرمدی تشکیل یافته‌اند. همچنین، ترمبولیت نیز دیگر ساختار‌ میکروبیالی سازند نجمه است که با ماکروفابریک لخته‌ای و بدون لامینه در بالای شیل‌های قرمز قاعده‌ی چرخه‌های رسوبی در محیط زیر جزرمدی کم عمق نهشته شده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Reconstructing the depositional environment of microbial deposits of the upper Jurassic Najmah formation in the Paveh region, Kermanshah

نویسندگان [English]

  • M. Isanejad 1
  • M. Daraei 2
  • A. Bayet-Goll 2
  • M. Imani seginsara 1
  • A. Zohdi 3
  • J. Rabbani 3
چکیده [English]

The Najmah formation is composed of variable microbial build-ups disconformably resting on the dark calcareous shales and limestones of the Sargelu formation. The transition from the middle Jurassic Sargelu to the upper Jurassic Najmah was associated with a conspicuous change in depositional environment so that the intrashelf basin of the Sargelu with the domination of black calcareous shales and dark pelagic limestones evolved to a shallow-marine ramp with carbonate deposition from mostly microbial origin. This change caused by a regression and a resultant interruption in sedimentation is evidenced by the occurrence of intraclastic breccia, fenestral fabrics, evaporite pseudomorphs as well as various microbial build-ups in the Najmah pointing to the superiority of arid climate and hypersaline conditions with paramount environmental stresses during the deposition of the formation. Facies recognized in the Najmah formation include five microfacies and two lithofacies representing supratidal, intertidal and subtidal sub-environments. Based on microfabric viewpoint, microbialites of the Najmeh Formation f can be divided into thrombolite and stromatolite. The rock unit is dominantly composed of stromatolite, which is subdivided into stratiform and domal stromatolites based on morphoscopic criteria. Moreover, these stromatolites can be microscopically subdivided into five microfabrics among which so-called “planar micrite with sparite laminae” is the most frequent microfabric. Stromatolites of the Najmah developed in a supratidal to intertidal environment. Furthermore, thrombolite with a clotted and non-laminar fabric is another build-up of the formation, deposited in a shallow subtidal zone making the basal part of the cycles of the Najmah following the bottommost red shale.

کلیدواژه‌ها [English]

  • Najmah formation
  • Upper Jurassic
  • Tidal environment
  • Stromatolite
  • Thrombolite
ایمانی سقین‌سرا، ا (1400) محیط رسوب­گذاری و چینه‌نگاری سکانسی سازندهای سرگلو، نجمه و گوتنیا به سن ژوراسیک میانی –بالایی در کمربند چین‌خورده– رورانده زاگرس (برش‌های کزی و دودان در شمال‌غرب کرمانشاه)، با تأکید بر شناسایی واحدهای مستعد سنگ مخزن در چارچوب چینه‌نگاری سکانسی، رساله کارشناسی­ارشد دانشگاه تحصیلات تکمیلی زنجان، 200ص.
جلیلیان، ع. ح (1393) رخساره‌ها، محیط­رسوبی و چینه­نگاری سکانسی سازند سورمه (ژوراسیک) در منطقه فارس. دوفصلنامه رسوب­شناسی کاربردی، دوره 2، شماره 3، ص 90–104.
زهدی، ا.، و ربانی، ج (1398) سازوکار تشکیل کنگلومرا‌های درون حوضه‌ای: مطالعه موردی در تریاس و ژوراسیک منطقه زنجان.  دوفصلنامه رسوب­شناسی کاربردی، دوره 7، شماره 14، ص 57–70.
عیسی‌نژاد، م (1400) بررسی محیط رسوب­گذاری و پتانسیل هیدروکربنی سازندهای سرگلو، نجمه و گوتنیا در کمربند چین‌خورده- رورانده زاگرس (کرمانشاه) با استفاده از داده‌های رسوب‌شناسی و ژئوشیمی، رساله کارشناسی­ارشد دانشگاه تحصیلات تکمیلی زنجان، 168ص.
مطیعی، ه (1372) چینه‌شناسی زاگرس، سازمان زمین‌شناسی و اکتشافات معدنی کشور، 536ص.
 
Aitken, J. D (1967) Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Research, 37(4): 1163–1178.‏
Ala, M. A., and Moss, B. J (1979) Comparative petroleum geology of southeast Turkey and northeast Syria. Journal of Petroleum Geology, 1(4): 3–27.
Alavi, M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American journal of science, 304: 1–20.
Alsharhan, A. S., and Kendall, C. S. C (2003) Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues. Earth-Science Reviews, 61(3-4): 191–243.‏
Andrés, G. M. P., and Lago, B. B (2015) Sedimentary factors controlling thickness of stratiform stromatolites, from laminae to metre-thick packages (Sinemurian, Iberian Basin). Revista de la Sociedad Geológica de España, 28: 2.
Bayet‐Goll, A., and Daraei, M (2020) Palaeoecological, sedimentological and stratigraphical insights into microbially induced sedimentary structures of the lower Cambrian successions of Iran. Sedimentology, 67 (6): 3199–3235.
Bayet-Goll, A., Chen, J., Moussavi-Harami, R., and Mahboubi, A (2015) Depositional processes of ribbon carbonates in middle Cambrian of Iran (Deh-Sufiyan Formation, Central Alborz). Facies, 61, 9.
Bayet-Goll, A., Myrow, P. M., Aceñolaza, G. F., Moussavi-Harami, R., Mahboubi, A (2016) Depositional controls on the ichnology of Paleozoic wave-dominated marine facies: new evidence from the Shirgesht Formation, central Iran, Acta Geologica Sinica, 90 (5): 1572–1597.
Bayet-Goll, A., Nazarian Samani, P., Neto de Carvalho, C., Monaco, P., Khodaie, N., Morad Pour, M., Kazemeini, H., Zareiyan, M. H (2017) Sequence stratigraphy and ichnology of Early Cretaceous reservoirs, Gadvan formation in southwestern Iran. Marine and Petroleum Geology, 81: 294–319.
Bayet-Goll, A., Shirezadeh-Esfahani, F., Daraei, M., Monaco, P., Sharafi, M., Akbari Mohamadi, A (2018ª) Cyclostratigraphy across a Mississippian carbonate ramp in the Esfahan-Sirjan Basin, Iran: implications for the amplitudes and frequencies of sealevel fluctuations along the southern margin of the Paleotethys. International Journal of Earth Sciences, 107: 2233–2263.
Bayet-Goll, A., Daraei, M., Taher, S. P. M., Etemad-Saeed, N., de Carvalho, C. N., Zandkarimi, K., ... and Nasiri, Y (2020) Variations of the trace fossil Zoophycos with respect to paleoenvironment and sequence stratigraphy in the Mississippian Mobarak Formation, northern Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 551, 109754.
Bayet-Goll, A., Daraei, M., Geyer, G., Bahrami, N., and Bagheri, F (2021a) Environmental constraints on the distribution of matground and mixground ecosystems across the Cambrian Series 2–Miaolingian boundary interval in Iran: A case study for the central sector of northern Gondwana. Journal of African Earth Sciences, 176: 104-120.
Bayet-Goll, A., Buatois, L. A., Mángano, M. G., and Daraei, M (2021b) The interplay of environmental constraints and bioturbation on matground development along the marine depositional profile during the Ordovician Radiation. Geobiology, 1–38.
Bahniuk, A. M., Anjos, S., França, A. B., Matsuda, N., Eiler, J., Mckenzie, J. A., and Vasconcelos, C (2015) Development of microbial carbonates in the Lower Cretaceous Codó Formation (north‐east Brazil): Implications for interpretation of microbialite facies associations and palaeoenvironmental conditions. Sedimentology, 62(1): 155–181.
Dongjie, T., Xiaoying, S., Ganqing, J., Yunpeng, P., Wenhao, Z., Yuan, W., and Min, L (2013) Environment controls on Mesoproterozoic thrombolite morphogenesis: a case study from the North China Platform. Journal of palaeogeography, 2(3): 275–296.‏
Dunham, R. J (1962) Classification of carbonate rocks according to depositional textures. AAPG Special Volumes, 1: 108–121.
Dunnington, H. V (1959) Najmah Formation. In Van Bellen et al. (ed.): Lexique Stratigraphique Int., Asie, Fasc,10a, Iraq, 333p.
Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., and Visscher, P. T (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3): 141–162‏.
Dupraz, C., Visscher, P. T., Baumgartner, L. K., and Reid, R. P (2004) Microbe–mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology, 51(4): 745–765.‏
Flügel, E (2004) Microfacies analysis of limestones: Analysis, Interpretation and Application. Springer, Berlin, Heidelberg. 976p.
‏Fox, J. E., and Ahlbrandt, T. S (2002) Petroleum geology and total petroleum systems of the Widyan Basin and interior platform of Saudi Arabia and Iraq (Vol. 2202). US Department of the Interior, US Geological Survey. 26p.
Gradziński, M., Tyszka, J., Uchman, A., and Jach, R (2004) Large microbial-foraminiferal oncoids from condensed Lower–Middle Jurassic deposits: a case study from the Tatra Mountains, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 213(1–2): 133–151.‏
Grotzinger, J. P., and Knoll, A. H (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?. Annual review of earth and planetary sciences, 27(1): 313–358.‏
Jahnert, R. J., and Collins, L. B (2012) Characteristics, distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia. Marine Geology, 303: 115–136.
Kennard, J. M., and James, N. P (1986) Thrombolites and stromatolites: two distinct types of microbial structures. Palaios, 492–503.‏
Knorre, H. V., and Krumbein, W. E (2000) Bacterial calcification. In: Riding R. E., Awramik S.M. (eds) Microbial Sediments. Springer, Berlin, Heidelberg, 25–31.
Kremer, B., and Kaźmierczak, J (2005) Cyanobacterial mats from Silurian black radiolarian cherts: phototrophic life at the edge of darkness. Journal of Sedimentary Research, 75(5): 897–906.
Mancini, E. A., Llinas, J. C., Parcell, W. C., Aurell, M., Badenas, B., Leinfelder, R. R., and Benson, D. J (2004) Upper Jurassic thrombolite reservoir play, northeastern Gulf of Mexico. AAPG bulletin, 88(11): 1573–1602.‏
Moore, C. H., and Wade, W. J (2013) Carbonate reservoirs: Porosity and diagenesis in a sequence stratigraphic framework. Elsevier. Newnes.‏ 392p.
Myshrall, K. L., Mobberley, J. M., Green, S. J., Visscher, P. T., Havemann, S. A., Reid, R. P., and Foster, J. S (2010) Biogeochemical cycling and microbial diversity in the thrombolitic microbialites of Highborne Cay, Bahamas. Geobiology, 8(4): 337–354.
Alsharhan, A. S. and Nairn, A. E. M (2003) Sedimentary basins and petroleum geology of the Middle East. Elsevier Science. 878p.
 Petrash, D. A., Gingras, M. K., Lalonde, S. V., Orange, F., Pecoits, E., and Konhauser, K. O (2012) Dynamic controls on accretion and lithification of modern gypsum-dominated thrombolites, Los Roques, Venezuela. Sedimentary Geology, 245: 29–47.‏
Nasiri, Y., Bayet-Goll, A., Mahboubi, A., Moussavi-Harami, R., Monaco, P (2020) Paleoenvironmental control on trace fossils across a Mississippian carbonate ramp succession, Mobarak Formation, east of Central and Eastern Alborz, Iran. Journal of African Earth Sciences, 165: 103800.
Olchowy, P., Krajewski, M., and Felisiak, I (2019) Late Jurassic facies succession of the Kleszczów Graben area (southern border of the Łódź Depression, peri-Tethyan shelf, central Poland). Geological Quarterly, 63(4): 657–682.‏
Pratt, B. R (2001) Calcification of cyanobacterial filaments: Girvanella and the origin of lower Paleozoic lime mud. Geology, 29(9): 763–766.‏
Pleş, G., Bucur, I. I., and Săsăran, E (2016) Depositional environments, facies and diagenesis of the Upper Jurassic–Lower Cretaceous carbonate deposits of the Buila-Vânturariþa Massif, Southern Carpathians (Romania). In Annales Societatis Geologorum Poloniae, 86(2): 165–183.
Reid, R. P., Visscher, P. T., Decho, A. W., Stolz, J. F., Bebout, B. M., Dupraz, C., ... and DesMarais, D. J (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406(6799): 989–992.
Riding, R (2000) Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology, 47: 179–214.
Riding, R (2006) Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic–Cambrian changes in atmospheric composition. Geobiology, 4: 299–316.
Sadooni, F. N (1997) Stratigraphy and petroleum prospects of Upper Jurassic carbonates in Iraq. Petroleum Geoscience, 3(3), 233-243.‏ Sadooni, F. N. (1997). Stratigraphy and petroleum prospects of Upper Jurassic carbonates in Iraq. Petroleum Geoscience, 3: 233–243.
Sharland, P. R., Archer, R., Casey, D. M., Davies, R. B., Hall, S. H., Heward, A. P., ... and Simmons, M. D (2001) Arabian Plate Sequence Stratigraphy. Gulf PetroLink, Manama, Bahrain, 371p.
Seeling, M., Emmerich, A., Bechstädt, T., and Zühlke, R (2005) Accommodation/sedimentation development and massive early marine cementation: Latemar vs. Concarena (Middle/Upper Triassic, Southern Alps). Sedimentary Geology, 175 (1–4): 439–457.‏
Setudehnia, A (1978) The mesozoic sequence in south‐west Iran and adjacent areas. Journal of Petroleum Geology, 1: 3–42.
Shapiro, R. S (2000) A comment on the systematic confusion of thrombolites. Palaios, 15(2): 166-169.
Shapiro, R. S., and Awramik, S. M (2006) Favosamaceria cooperi new group and form: a widely dispersed, time-restricted thrombolite. Journal of Paleontology, 80(3): 411–422.‏
Sharafi, M., Rodríguez-Tovar, F. J., Janočko, J. Bayet-Goll, A., Mohamadi, M (2021) Environmental significance of trace fossil assemblages in a tide‒wave-dominated shallow-marine carbonate system (Lower Cretaceous), northern Neo-Tethys margin, Kopet-Dagh Basin, Iran. Int J Earth Sci (Geol Rundsch), 111: 103–126.
Sibley, D. F., and Gregg, J. M (1987) Classification of dolomite rock textures. Journal of sedimentary Research, 57(6): 967–975.‏
Stolz, J (2000) Soziologie der Fremdenfeindlichkeit: theoretische und empirische Analysen. Campus Verlag.‏
Suarez-Gonzalez, P., Quijada, I. E., Benito, M. I., Mas, R., Merinero, R., and Riding, R (2014) Origin and significance of lamination in Lower Cretaceous stromatolites and proposal for a quantitative approach. Sedimentary Geology, 300: 11–27.
Tang, D., Shi, X., Jiang, G., and Zhang, W (2013) Microfabrics in Mesoproterozoic microdigitate stromatolites: evidence of biogenicity and organomineralization at micron and nanometer scales. Palaios, 28(3): 178–194.
Tavani, S., Parente, M., Vitale, S., Iannace, A., Corradetti, A., Bottini, C., ... and Mazzoli, S (2018) Early Jurassic rifting of the Arabian passive continental margin of the Neo‐Tethys. Field evidence from the Lurestan region of the Zagros fold‐and‐thrust belt, Iran. Tectonics, 37(8): 2586–2607.‏
Vennin, E., Olivier, N., Brayard, A., Bour, I., Thomazo, C., Escarguel, G., ... and Hofmann, R (2014) Microbial deposits in the aftermath of the end‐Permian mass extinction: A diverging case from the Mineral Mountains (Utah, USA). Sedimentology, 62(3): 753–792.