شرایط زیستی دیرینه و فرایندهای رسوبی نهشته‌های پرمین میانی در ایران و دلایل انقراض فوزولینیدهای با پوسته بزرگ

نویسنده

استادیار گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه لرستان، خرم‌آباد، ایران

چکیده

به منظور بررسی تاثیر شرایط زیستی دیرینه و فرایندهای رسوبی بر گسترش فوزولینیدهای با پوسته بزرگ در نهشته‌های پرمین میانی ایران دو برش چینه‌شناسی در کوه­های شتری و باغ‌ونگ واقع در بلوک طبس در خاور ایران مرکزی و یک برش چینه‌شناسی در دره همبست در ناحیه آباده در باختر ایران مرکزی مطالعه شده‌اند. علت حضور اندک فوزولینیدها با پوسته بزرگ در آهک­های پرمین میانی برش شتری به سن رودین تا وردین که در یک محیط ساب‌تایدال کم‌عمق تا یک محیط شول با انرژی بالا نهشته شده‌اند، احتمالا دمای زیاد آب­های قدیمه بیش از 36 درجه  سانتی­گراد بوده که حاکی از شرایط بسیار گرم و نامطلوب برای زیست فوزولینیدهای با پوسته بزرگ و همزیست جلبکی  می‌باشد. در آهک­های با نوارهای چرتی مربوط به محیط‌های نسبتا عمیق حوضه‌ای به سن رودین تا وردین برش باغ‌ونگ،  فوزولینیدهای با پوسته بزرگ حضور ندارند. در برش دره همبست، آهک­های کم‌عمق ساب‌تایدال بخش میانی و بالایی واحد یک سازند سورمق به سن رودین تا رودین دارای فوزولینیدهای با پوسته بزرگ فراوان می‌باشند. در آهک­ها با نوارهای چرتی مربوط به محیط حوضه واحد دو سازند سورمق، هیچگونه فوزولینیدی حضور ندارد. وجود این چرت­ها در پرمین میانی ایران در برش­های همبست و باغ‌ونگ در ارتباط با حادثه چرتی پرمین میانی و یوتروفیکشن در جنوب چین و امریکای شمالی است که با زیست فوزولینیدهای با پوسته بزرگ در موقعیت­های الیگوتروفیک محیط­های کم‌عمق ناسازگاری دارد. آخرین افق حضور فوزولینیدهای با پوسته بزرگ در دره همبست در بخش قاعده‌ای واحد سه سازند سورمق به سن وردین بالا می‌باشد. با توجه به  انقراض محلی فوزولینیدهای با پوسته بزرگ قبل از حادثه زیستی انتهای پرمین میانی در سه برش مورد مطالعه می‌توان نتیجه گرفت تغییرات آب و هوایی و میزان ورود مواد غذایی به اقیانوس­ها نقش عمده‌ای در انقراض این ارگانیسم­ها داشته است.     

کلیدواژه‌ها


عنوان مقاله [English]

Middle Permian paleo-ecological conditions and depositional processes in Iran and causes of large-test fusulinids extinction

نویسنده [English]

  • S. Arefifard
چکیده [English]

In order to examine the effect of paleo-ecological conditions and depositional processes on large-test fusulinids in Middle Permian deposits of Iran two stratigraphic sections in Shotori and Bagh-e Vang Mountains in Tabas Block located in east-central Iran and one stratigraphic section in Hambast Valley, Abadeh area situated in west-central Iran were studied. The possible cause of the few occurrences of large-test fusulinid in Roadian-Wordian carbonates of the Shotori section, which are deposited in a shallow subtidal to high-energy shoal, was high temperature (more than 36° centigrade) of paleo sea indicating unfavorable condition for algal-symbiont large-test fusulinids life. There is no large-test fusulinid in Roadian-Wordian limestones with chert bands of Bagh-e Vang section deposited in a relatively deep basinal environment. In Hambast Valley section, the Roadian-Wordian shallow-water subtidal limestones of the middle and upper parts of the Unit 1 of Surmaq Formation contain abundant large-test fusulinids. No large-test fusulinid is recorded from the relatively deep basinal limestones interbedded with chert bands of the Unit 2 of the Surmaq Formation. The presence of cherts in the Middle Permian of Iran in both Bagh-e Vang and Hambast Valley sections are related with Middle Permian chert-event and eutrophication also reported in South China and North America which is adverse for the life of large-test fusulinids in oligotrophic shallow water environment. The last horizon of the large-test fusulinids in Hambast Valley section is in the basal part of the upper Wordian Unit 3 of the Surmaq Formation. Considering the local disappearance of the large-test fusulinids in the three studied sections before the end-Guadalupian bio-event, it can be concluded that the climate change and the nutrient level input had major role in extinction of these organisms.

کلیدواژه‌ها [English]

  • Depositional environment
  • Middle Permian
  • Fusulinid
  • Tabas Block
  • Hambast Valley
عارفی‌فرد، س، آدابی، م.، ح، خسروتهرانی، خ، شمیرانی، ا، آقانباتی، ع، دیویداف، و (1385) بیوستراتیگرافی سازندهای خان و جمال در مناطق کلمرد، شتری و شیرگشت (ایران مرکزی) بر مبنای فرامینیفرها (فوزولینید). زمین­شناسی ایران، سال دوم، شماره 4، ص 3-31.
شاهین‌فر، س، یوسفی­یگانه، ب، عارفی‌فرد، س (1398) بررسی ریز‌رخساره­ها، تفسیر شرایط ته‌نشینی و تعیین مدل رسوبی نهشته­های اواخر پرمین میانی و مرز گوادالوپین-لوپینگین در ناحیه آباده ایران، باختر پالئوتتیس. رسوب­شناسی کاربردی، دوره 7، شماره 13، ص 148-131. 
یاسبلاغی شراهی، ص، یوسفی­یگانه، ب، عارفی‌فرد، س، فرهپور، م. م (1399) واکاوی فرایندهای دیاژنزی سنگ‌آهک­های کربناته سازند باغ‌‌ونگ در شمال طبس (خاور ایران مرکزی). رسوب­شناسی کاربردی، دوره 8، شماره 15، ص 22-1. 
Alavi, M (1991) Tectonic Map of the Middle East. Tehran: Geological Survey of Iran.
Angiolini, L., Gaetani, M., Muttoni, G., Stephenson, M. H., Zanchi, A (2007) Tethyan oceanic currents and climate gradients 300 my ago. Geology, 35: 1071-1074.
Arefifard, S., and Isaacson, P. E (2011) Permian Sequence stratigraphy in east-central Iran: Microplate records of Peri-Tethyan and Peri-Gondwanan events. Stratigraphy, 8(1): 61-83.
Arefifard, S (2019) Guadalupian cool versus warm water deposits in central Iran: a record of the Capitanian Kamura event. Geological Magazine, 156 (3): 430-446.
Arefifard, S., and Payne, J. L (2020) End-Guadalupian extinction of larger fusulinids in central Iran and implications for the global biotic crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 550: 109743.
Balini, M., Mandrioli, R., Nicora, A., Angiolini, L., Vuolo, I., Sohrabi, Z., Bahramanesh, M (2016) First report of Upper Pennsylvanian ammonoids and Lower Permian conodonts from Bagh-e-Vang area (Central Iran). Permophiles, 62: 25-27.
Baghbani, D (1993) The Permian sequence in the Abadeh region, central Iran. Contributions to Eurasian Geology, Occasional Publications, Earth Sciences Research Institute, University of South Carolina. 9B: 7-22.
Beauchamp, B., and Baud, A (2002) Growth and demise of Permian biogenic chert along northwest Pangea: Evidence for end-Permian collapse of thermohaline circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 184: 37-63.
Beavington-Penney, S. J., Racey, A (2004) Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeoenvironmental analysis. Earth-Science Reviews, 67 (3–4): 219-265.
Bond, D. P. G., Hilton, J. Wignall, P. B., Ali, J. R., Stevens, L. G., Sun, Y-D. Lai, X-L (2010a) The Middle Permian (Capitanian) mass extinction on land and in the oceans. Earth-Science Reviews, 102: 100-116.
Bond, D. P. G., Wignall, P. B., Wang, W., Izon, G., Jiang, H-S., Lai, X-L., Sun, Y-D., Newton, R. J., Shao, L-Y., Vedrine, S., Cope, H (2010b) The mid-Capitanian (Middle Permian) mass extinction and carbon isotope record of South China. Palaeogeography, Palaeoclimatolog, Palaeoecology, 292: 282-294.
Chen, B., Joachimski, M. M., Shen, S-Z., Lambert, L. L., Lai, X. L., Wang, X. D., Chen, J. Yuan, D. X (2013) Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited. Gondwana Research, 24: 77-89.
Davydov, V. I., and Arefifard, S (2007) Permian fusulinid fauna of Gondwanan affinity from Kalmard Region, East-Central Iran and its significance for the tectonics and paleogeography. Paleontologia Electronica, 10: 1-40.
Davydov, V. I., and Arefifard, S (2013) Middle Permian (Guadalupian) fusulinid taxonomy and biostratigraphy of the mid-latitude Dalan Basin, Zagros, Iran and their applications in paleoclimate dynamics and paleogeography. Geoarabia,18: 17-62.
Flügel, E (2010) Microfacies of Carbonate Rocks: Analysis, Interpretation and Application: Berlin, Heidelberg, New York, Springer-Verlag, 984p.
Fujita, K., Okai, T., Hosono, T (2014) Oxygen metabolic responses of three species of large benthic foraminifers with algal symbionts to temperature stress. PLoS ONE, 9 (3): 1-8.
Gates, L. M., James, N. P., Beauchamp, B (2004) A glass ramp: Shallow-water Permian spiculitic chert sedimentation, Sverdrup Basin, Arctic Canada. Sedimentary Geology, 168: 125-147.
Hottinger, L (1997) Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations. Bulletin de la Societe Geologique de France, 168: 491-505.
Hohenegger, J (2004) Depth coenoclines and environmental considerations of Western Pacific larger foraminifera. Journal of Foraminiferal Research, 34: 9-33.
Hallock, P (1999) Symbiont-bearing foraminifera. In: Sen Gupta, B K (Ed.), Modern Foraminifera. Kluwer Academic, Dordrecht, 123-139.

Hallock, P., Williams, D. E., Fisher, E. M., Toler, S. K (2006) Bleaching in foraminifera with algal symbionts: implications for reef monitoring and risk assessment. Anuário do Instituto de Geociências, 29: 108-128.

He, B., Xu, Y. G., Guan, J. P., Zhong, Y. T (2010) Paleokarst on the top of the Maokou Formation: further evidence for domal crustal uplift prior to the Emeishan flood volcanism. Lithos, 119: 1-9.
Heydari, E., Hassandzadeh, J., Wade, W. J (2000) Geochemistry of central Tethyan Upper Permian and Lower Triassic strata, Abadeh region, Iran. Sedimentary Geology, 137: 85-99.
Heydari, E., Hassanzadeh, J., Wade, W. J., Ghazi, A. M (2003) Permian-Triassic boundary interval in the Abadeh section of Iran with implications for mass extinction: Part 1-Sedimentology. Palaeogeography, Palaeoclimatology, Palaeoecology, 193: 405-423.
Huang, H., Shi, Y. K., Jin, X. C (2016) Permian (Guadalupian) fusulinids of Bawei Section in Baoshan Block, western Yunnan, China: Biostratigraphy, facies distribution and paleogeographic discussion. Palaeoworld, 26(1): 95-114.
Ishiga, H (1986) Late Carboniferous and Permian radiolarian biostratigraphy of Southwest Japan. J. Geosci. Osaka City University, 29: 89-100.
Ishiga, H (1990) Paleozoic radiolarians. In: K. Ichikawa, S. Mizutani, I. Hara, S. Hada and A. Yao (Editors), Pre-Cretaceous Terranes of Japan, IGCP Project, 224, 285-295.
Isozaki, Y., Kawahata, H., Minoshima, K (2007a) The Capitanian (Permian) Kamura Cooling Event: the beginning of the Paleozoic–Mesozoic transition. Palaeoworld, 16: 16-30.
Isozaki, Y., Kawahata, H., Ota, A (2007b) A unique carbon isotope record across the Guadalupian–Lopingian (Middle–Upper Permian) boundary in mid-oceanic paleoatoll carbonates: the high-productivity “Kamura event” and its collapse in Panthalassa. Global Planetary Change, 55: 21-38.
Jones, R. W (1999) Marine invertebrate (chiefly foraminiferal) evidence for the palaeogeography of the Oligocene-Miocene of western Eurasia, and consequences for terrestrial vertebrate migration. In: Agusti, J., Andrews, P., Rook, L (Eds.), Hominoid Evolution and Climatic Change in Europe. The Evolution of Neogene Terrestrial Systems in Europe 1, Cambridge University Press, UK, 274-308.
Jones, A. C., Blum, J. E., Pawlik, J. R (2005) Testing for defensive synergy in Caribbean sponges: Bad taste or glass spicules?. Journal of Experimental Marine Biology and Ecology, 322: 67-81.
Jost, A. B., Mundil, R., He, B., Brown, S. T., Altiner, D., Sun, Y-D., DePaolo, D. J., Payne, J. L (2014) Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes. Earth and Planetary Science Letters, 396: 201-212.
Kobayashi, F., and Ishii, K-I (2003) Permian fusulinacean of the Surmaq Formation in the Abadeh region, central Iran. Rivista Italiano di Paleontologia Stratigrafia, 109: 307-337.
Korte, C., Jasper, T., Kozur, H. W., Veizer, J (2005) δ18Ocarb and δ13Ccarb of Permian brachiopods: a record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 224: 333-351.
Large, R. R., Halpin, J. A., Lounejeva, E., Danyushevsky, L. V., Malsennikov, V. V., Gregory, D., Sack, P. J., Haines, P. W., Long, J. A., Makoundi, C., Stepamov, S (2015) Cycles of nutrient trace elements in the Phanerozoic Ocean. Gondwana Research, 28: 1282-93.
Leven, E. Ja., and Vaziri Moghaddam, H (2004) Carboniferous–Permian stratigraphy and fusulinids of eastern Iran. The Permian in the Bagh-e Vang section (Shirgesht area). Rivista Italiano di Paleontologia Stratigrafia, 110: 441-65.
Murchey, B. L., and Jones, D. L (1992) A mid-Permian chert event: Widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins. Palaeogeography, Palaeoclimatology, Palaeoecology, 96: 161-174.
Nestell, G. P., and Nestell, M. K (2010) Late Capitanian (latest Guadalupian, Middle Permian) radiolarians from the Apache Mountains, West Texas. Micropaleontology, 56(1-2): 7-68.
Payne, J. L., and Clapham, M. E (2012) End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annual Review of Earth Planetary Science, 40: 89-111.
Prazeres, M., Uthicke, S., Pandolfi, J. M (2015) Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera. Proceeding of the Royal Society B- Biological Science, 282: 1-11.
Qiu, Z., and Wang, Q (2011) Geochemical evidence for submarine hydrothermal origin of the Middle-Upper Permian chert in Laibin of Guangxi, Science China Earth Sciences, 54: 1011-1023.
Ross, C. A (1982) Paleobiology of fusulinaceans. In: Proceedings- North American Paleontological Convention, 3: 441-445.
Ross, C. A (1992) Paleobiogeography of fusulinacean foraminifera: Studies in Benthic foraminifera, Sendai, 1990. Tokai University Press, Tokyo, 23–31.
Ross, C. A (1995) Permian fusulinanceans. In: Scholle, P A, Peryt, T M, Ulmer-Scholle, D S (Eds.), Permian of Northern Pangea. Paleogeography, Paleoclimate, Stratigraphy 1 Springer-Verlag, New York, Berlin, 167-185
Shahinfar, S., Yousefi Yeganeh, B., Arefifard, S., Vachard, D., Payne, J. L (2020) Refined foraminiferal biostratigraphy of upper Wordian, Capitanian and Wuchiapingian strata in Hambast Valley, Abadeh region (Iran), and paleobiogeographic implications. Geological Journal, 55: 6255-6279.
Shi, L., Feng, Q., Shen, J., Ito, T., Chen, Z-Q (2016) Proliferation of shallow-water radiolarians coinciding with enhanced oceanic productivity in reducing conditions during the Middle Permian, South China: evidence from the Gufeng Formation of western Hubei Province. Palaeogeography, Palaeoclimatology, Palaeoecology, 444: 1-14.
Stanley, S. M., and Yang, X. N (1994) A double mass extinction at the end of the Paleozoic Era. Science, 266: 1340-1344.
Taraz, H., Golshani, F., Nakazawa, K., Shimizu, D., Bando, Y., Ishii, K-I., Maurata, M., Okimura, Y., Sakagami, S., Nakamura, K., Tukuoka, T (1981) The Permian and the Lower Triassic systems in Abadeh region, central Iran. In: Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy, 47: 62-133.
Tsuyoshi, I., Zhang, L., Feng, Q., Atsushi, M (2013) Guadalupian (Middle Permian) Radiolarian and Sponge Spicule Faunas from the Bancheng Formation of the Qinzhou Allochthon, South China. Journal of Earth Science, 24(2): 145-156.
Tucker, M. E., and Wright, V. P (1990) Carbonate Sedimentology. Blackwell, Oxford, 482p.
Ueno, K (2001) Jinzhangia, a new staffellid fusulinoidea from the Middle Permian Daaozi Formation of the Baoshan Block, West Yunnan, China. Journal of Foraminiferal Research, 31: 233-243.
Ueno, K (2003) The Permian fusulinoidean faunas of the Sibumasu and Baoshan Blocks: their implications for the paleogeographic and paleoclimatologic reconstruction of the Cimmerian Continent. Palaeogeography, Palaeoclimatology, Palaeoecology, 193: 1-24.
Vachard, D (1996) Quelques echos du Paleozoique. Geochronique, 58: 1-16.
Vattanasak, H., Chonglakmani, C., Feng, Q., Morley, C. K (2020) Chert geochemistry, depositional setting, stratigraphic and structural significance for the Permian Nong Pong Formation, Khao Khwang Fold and Thrust Belt, Saraburi, Thailand. Journal of Asian Earth Sciences, 191: 104234.
Voulo, I (2014) Conodont Biostratigraphy from Carboniferous and Permian Successions of Pamir, Central Iran and Tunisia. Ph.D. Thesis, Milan, 319p.
Wonganan, N., and Caridroit, M (2007) Middle to Upper Permian radiolarian faunas from chert blocks in Pai area, northwestern Thailand. Eclogae Geologicae Helvetiae, 99: 133-139
Wu, W., Liu, W., Mou, C., Liu, H., Qiao, Y., Pan, J., Ning, S., Zhang, X., Yao, J., Liu, J (2020) Organic-rich siliceous rocks in the upper Permian Dalong Formation (NW middle Yangtze): Provenance, paleoclimate and paleoenvironment. Marine and Petroleum Geology, 123: 104728.
Yang, J., Cawood, P. A., Dua, Y., Condonc, D. I., Yana, J., Liud, J., Huanga, Y., Yuane, D (2018) Early Wuchiapingian cooling linked to Emeishan basaltic weathering? Earth and Planetary Science Letters, 492: 102-111.
Yasbolaghi Sharahi, S., Yousefi Yeganeh, B., Arefifard, S., Vachard, D., Farahpour, M. M (2021) Biostratigraphy, taxonomy and paleobiogeography of the upper Cisuralian (upper Yakhtashian-Bolorian) foraminifers from east-central Iran, with clarification of the taxonomy of the fusulinid genera Cuniculinella and Cuniculina pre-occupied. Journal of Paleontology, 95 (81): 1-30.