معرفی و مکانیزم تشکیل انواع ساخت های تغییر شکل یافته رسوبات نرم در توالی کلوت های شهداد، جنوب باختر بیابان لوت

نویسندگان

1 دانشیار گروه زمین‌شناسی، دانشکده علوم، دانشگاه شهید باهنر کرمان، کرمان، ایران

2 دانشجوی دکترا، گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

کلوت­های شهداد شامل مجموعه­ای از تپه­های طولی با روند شمال باختری- جنوب خاوری بوده که در شمال شهداد (خاور کرمان) و جنوب باختر بیابان لوت قرار دارند. توالی عمودی کلوت­ها عمدتاً از زوج لایه­های ماسه­ای و گل­سنگی تشکیل شده که در یک محیط دریاچه­ای موقت رسوب­گذاری کرده­اند. علاوه بر ساخت­های رسوبی فیزیکی، در این مجموعه انواع ساخت­های تغییر شکل یافته رسوبات نرم مشاهده می­شود که تحت تاثیر فرایند مایع­شدن و اغلب در دو مرحله مایع­گونی و سیال­شدن رسوبات تشکیل شده­اند. از مهم­ترین ساخت­های تغییر شکل یافته در زمان مایع­گونی می­توان به ساخت­های وزنی و شعله­ای، چین­خوردگی­ها و طبقات پیچیده و ساخت­های تی­پی اشاره کرد. در مرحله سیال­شدن ساخت­های توپی و بالشی و ساخت­های فرار آب و تزریق رسوب تشکیل شده­اند. برش­های اتوکلاستی و ریزگسل­ها نیز اندکی پس از سفت شدن رسوبات شکل گرفته­اند. منشاء و عامل اصلی تشکیل این ساخت­ها در دو دسته اندوژنیک (فرایندهای رسوبی و محیط رسوبی) و اگزوژنیک (حرکات ناشی از زمین­لرزه) تقسیم می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Presentation and formation mechanism of soft-sediment deformation structures in the succession of Shahdad Kaluts, southwest of Lut desert

نویسندگان [English]

  • H. Zand-Moghadam 1
  • H. Bavi 2
1
2
چکیده [English]

The Shahdad Kaluts include a series of longitudinal dunes with a northwest-southeast trend that are located in the north of Shahdad (East of Kerman) and southwest of the Lut desert. The succession of Kaluts consists of hetrolithic layers of sand and mud sediments that deposited in a temporary lake environment. In addition to physical sedimentary structures, in this s successions, various soft-sediment deformation structures observed, which are formed under the influence of liquidization process in two stages of liquefaction and fluidization. One of the most important deformed structures during liquefaction stage are load and flam structures, folding and convolute bedding and tepee structures. In the fluidization stage, ball and pillow structures, water-escape and sediment-injection structures were formed. Autoclastic breccias and microfaults also formed shortly after consolidate of sediments. The triggers and main formation factors of these structures are divided into two categories: endogenic (sedimentary process and depositional setting) and exogenic (earthquake activity) triggers.

کلیدواژه‌ها [English]

  • Soft-sediment deformation structures
  • Liquefaction
  • Fluidization
  • Shahdad Kaluts
ابراهیمی میمند، س (1397) رسوب­شناسی، ژئوشیمی و منشا کلوت­ها و تپه­های ماسه­ای دشت شهداد، شرق کرمان. پایان نامه کارشناسی­ارشد، دانشگاه فردوسی مشهد.
زندمقدم، ح (1395) پهـنه­بندی دشت شهداد از دیـدگاه رسوب­شناسی و ژئومورفولوژی. مجموعه مقالات دومین همایش انجمن رسوب­شناسی ایران، دانشگاه فردوسی مشهد، ص 188-193. 
Ali, U., and Ali, A (2018) Seismically induced soft-sediment deformation structures in an active seismogenic setting: The Plio-Pleistocene Karewa deposits, Kashmir Basin (NW Himalaya). Journal of Structural Geology, 115: 28-46.
Allen, J. R. L (1982) Sedimentary Structures: Their Character and Physical Basis. vol. II. Elsevier, Amsterdam, 663p.
Berra, F., and Felletti, F (2011) Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): stratigraphic significance. Sedimentary Geology, 235: 249 263.
Collinson, J (1994) Sedimentary deformational structures. In: Maltman, A. (Ed.), The Geological Deformation of Sediments. Springer, Dordrecht, 95–125.
Dasgupta, P (1998) Recumbent flame structures in the Lower Gondwana rocks of the Jharia Basin, Indiada plausible origin. Sedimentary Geology, 119, 253-261.
Ehsani, A. H., and Quiel, F (2008) Application of Self Organizing Map and SRTM data to characterize yardangs in the Lut desert, Iran, Remote Sensing of Environment, 112: 3284-3294.
Feng, Z. Z (2017) A successful symposium of Multi-origin of soft-sediment deformation structures and seismites, Journal of Palaeogeography, 6(1): 1-6.
Feng, Z. Z., Bao, Z. D., Zheng, X. J., Wang, Y (2016) Researches of soft-sediment deformation structures and seismites in Chinada brief review. Journal of Palaeogeography, 5(4): 311-317.
Ferrill, D. A., and Morris, A. P (2003) Dilational normal faults. Journal of Structural Geology, 25: 183–196.
Greb, S. F., Ettensohn, F. R., Obermeier, S. F (2002) Developing a classification scheme for seismites. In: GSA North-central and Southeastern Section Annual Meeting Abstracts with Programs, Session No. 42.
Gruszka, B., and van Loon, A. J. T (2007) Pleistocene glaciolacustrine breccias of seismic origin in an active graben (central Poland). Sedimentary Geology, 193: 93–104.
He, B. Z., and Qiao, X. F (2015) Advances and overview of the study on paleo-earthquake events: a review of seismites. Acta Geologica Sinica (English Edition), 89: 1702-1746.
Hurst, A., Scott, A., Vigorito, M (2011) Physical characteristics of sand injectites. Earth- Science Reviews, 106: 215–246.
Kahle, C. F (2002) Seismogenic deformation structures in microbialites and mudstones, Silurian Lockport Dolomite, northwestern Ohio, U.S.A. Journal of Sedimentary Research, 72: 201–216.
Lee, D. C., Byun, U. H., Kwon, Y. K., Keehm, Y., Jeong, G. Y., Yi, K (2020) Manchuriophycuslike elliptical cracks in thin mudstones intercalated with lacustrine sandstone: intrastratal crack formation in water-saturated sediments. Sedimentary Geology, 408: 105769.
Liang, L., Qiao, X., Dai, F., Zhong, N., Jiang, H (2021) Seismically triggered soft-sediment deformation structures in Tashkorgan lacustrine sediments, northeastern Pamir, China. Quaternary International, 604: 82-92.
Lowe, D. R (1975) Water escape structures in coarse-grained sediments. Sedimentology, 22: 157–204.
Maltman, A (1984) On the term soft-sediment deformation. Journal of Structural Geology, 6: 589-592.
Mazumder, R., van Loon, A. J. T., Malviya, V. P., Arima, M., Ogawa, Y (2016) Soft-sediment deformation structures in the Mio-Pliocene Misaki Formation within alternating deep-sea clays and volcanic ashes (Miura Peninsula, Japan). Sedimentary Geology, 344: 323–335.
Meng, J., Jiang, Z., Yang, Y., Nian, T (2021) Soft-sediment deformation structures in a lacustrine depositional context: An example from the Eocene Dongying Depression in the Bohai Bay Basin, East China. Sedimentary Geology, 426: 106039.
Moretti, M., and Sabato, L (2007) Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant'Arcangelo Basin (Southern Italy): seismic shock vs. overloading. Sedimentary Geology, 196: 31–45.
Moretti, M., Alfaro, P., Owen, G (2016) The environmental significance of soft-sediment deformation structures: key signatures for sedimentary and tectonic processes. Sedimentary Geology, 344: 1–4.
Neuwerth, R., Suter, F., Guzman, C. A., Gorin, G. E (2006) Soft-sediment deformation in a tectonically active area: the Plio-Pleistocene Zarzal Formation in the Cauca Valley (Western Colombia). Sedimentary Geology, 186: 67–88.
Ojala, A. E. K., Mattila, J., Virtasalo, J., Kuva, J., Luoto, T. P (2018) Seismic deformation of varved sediments in southern Fennoscandia at 7400 cal BP. Tectonophysics, 744, 58–71.
Owen, G, (1987) Deformation processes in unconsolidated sands. In: Jones, M. E., Preston, R. M. F. (Eds.), Deformation of Sediments and Sedimentary Rocks. Geological Society of London Special Publication, 29: 11–24.
Owen, G (2003) Load structures: gravity-driven sediment mobilization in the shallow subsurface. In: Van Rensbergen, P., Hillis, R. R., Maltman, A. J., Morley, C. K. (Eds.), Subsurface Sediment Mobilization. Geological Society of London Special Publication, 216: 21–34.
Owen, G., Moretti, M., Alfaro, P (2011) Recognising triggers for soft-sediment deformation: current understanding and future directions. Sedimentary Geology, 235: 133–140.
Palladino, G., Alsop, G. I., Grippa, A., Zvirtes, G., Phillip, R. P., Hurst, A (2018) Sandstonefilled normal faults: a case study fromcentral California. Journal of Structural Geology, 110: 86–101.
Pisarska-Jamro, M., Weckwerth, P (2013) Soft-sediment deformation structures in a Pleistocene glaciolacustrine delta and their implications for the recognition of subenvironments in delta deposits. Sedimentology, 60: 637–665.
Rana, N., Prakash Sati, S., Sundriyal, Y., Juyal, N (2016) Genesis and implication of soft sediment deformation structures in high energy fluvial deposits of the Alaknanda valley, Garhwal Himalaya, India. Sedimentary Geology, 344: 263-276.
Rossetti, D. F., Alves, F. C., Valeriano, M. M (2017) A tectonically-triggered late Holocene seismite in the southern Amazonian lowlands, Brazil. Sedimentary Geology, 358: 70–83.
Shanmugam, G (2016) The contourite problem. In: Mazumder, R. (Ed.), Sediment Provenance, Chapter 9. Elsevier, 183-254.
Shanmugam, G (2017) The fallacy of interpreting SSDS with different types of breccias as seismites amid the multifarious origins of earthquakes: implications. Journal of Palaeogeography, 6(1): 12-44.
Shanmugam, G (2021) Mass Transport, Gravity Flows, and Bottom Currents. Chapter 9 Soft-sediment deformation structures. Elsevier, 377-439
Su, D. C., Sun, A. P (2012) Typical earthquake-induced soft sediment deformation structures in the Mesoproterozoic Wumishan Formation, Yongding River Valley, Beijing, China and interpreted earthquake frequency. Journal of Palaeogeography, 1: 71-89.
Surlyk, F., Gjelberg, J., Noe-Nygaard, N (2007) The Upper Jurassic Hareelv Formation of East Greenland: a giant sedimentary injection complex. In: Hurst, A., Cartwright, J. (Eds.), Sand Injectites: Implications for Hydrocarbon Exploration and Production. American Association of Petroleum Geologists Memoir 56, 141–149.
Suter, F., Martínez, J. I., Vélez, M. I (2011) Holocene soft-sediment deformation of the Santa Fe–Sopetrán Basin, northern Colombian Andes: evidence for pre-Hispanic seismic activity? Sedimentary Geology, 235, 188–199.
Topal, S., and Ozkul, M (2014) Soft-Sediment deformation Structures interpreted as Seismites in the Kolankaya Formation, Denizli Basin (SW Turkey). The Scientific World Journal, 2014. http://dx.doi.org/10.1155/2014/3526. Article ID 352654.
Törő, B., and Pratt, B. R (2015) Eocene paleoseismic record of the Green River Formation, Fossil Basin, Wyoming, U.S.A.: implications of synsedimentary deformation structures in lacustrine carbonate mudstones. Journal of Sedimentary Research, 85: 855–884.
Törő, B., Pratt, B. R., Renaut, R. W (2013) Seismically induced soft-sediment deformation structures in the Eocene lacustrine Green River Formation (Wyoming, Utah, Colorado, USA) – a preliminary study. GeoConvention 2013: Integration.
Van Loon, A. J. T (2009) Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos, 15: 3–55.
Van Loon, A. J., and Brodzikowski, K (1987) Problems and progress in the research on soft-sediment deformations. Sedimentary Geology, 50: 167-193.
Villegas, P. M., Umazano, A. M., Melchor, R. N., Kataoka, K (2019) Soft-sediment deformation structures in gravelly fluvial deposits: A record of Cretaceous seismic activity in Patagonia?. Journal of South American Earth Sciences, 90: 325–337.
Waldron, J. W. F., and Gagnon, J. F (2011) Recognizing softsediment structures in deformed rocks of orogens. Journal of Structural Geology, 33: 271-279.
Woźniak, P. P., Belzyt, S., Pisarska-Jamroży, M., Woronko, B., Lamsters, K., Nartišs, M., Bitinas, A (2021) Liquefaction and re-liquefaction of sediments induced by uneven loading and glacigenic earthquakes: implications of results from the Latvian Baltic Sea coast. Sedimentary Geology, 421: 105944.
Yeats, R. S., Sieh, K., Allen, C. R (1997) The Geology of Earthquakes. Oxford University Press, Oxford, New York, p. 568.
Zhou, Y. Q., Peng, T. M., Zhou, T. F., Zhang, Z. K., Tian, H., Liang, W. D., Yu, T., Sun, L. F (2017) Soft-sediment deformationstructures related to volcanic earthquakes of the Lower Cretaceous Qingshan Group in Lingshan Island, Shandong Province, East China. Journal of Palaeogeography, 6(2): 162-181.