ارزیابی پتروگرافی آلی و پتانسیل هیدروکربن زایی سازند گرو در برش سطح الارضی الیگودرز، لرستان

نویسندگان

1 دانشجوی کارشناسی‌ارشد، گروه حوضه‌های رسوبی و نفت، دانشکده علوم‌زمین، دانشگاه شهید بهشتی، تهران، ایران

2 استادیار گروه زمین‌شناسی، گروه حوضه‌های رسوبی و نفت، دانشکده علوم‌زمین، دانشگاه شهید بهشتی، تهران، ایران

3 استاد گروه زمین‌شناسی، گروه حوضه‌های رسوبی و نفت، دانشکده علوم‌زمین، دانشگاه شهید بهشتی، تهران، ایران

چکیده

به­منظور ارزیابی پتانسیل هیدروکربن­زایی سازند گرو در برش سطح­الارضی الیگودرز، آنالیزهای پتروگرافی آلی و پیرولیز راک­ایول برروی نمونه­های سنگ منشأ انجام شد. بدین ترتیب تعداد 15 نمونه تحت مطالعات میکروسکوپ نور عبوری، انعکاسی و فلورسانس و همچنین تعداد 12 نمونه تحت پیرولیز راک ایول VI قرار گرفتند. در نور عبوری ماسرال­های گروه مواد آلی آمورف و معادل آن­ها در نور انعکاسی، بیتومینیت تشخیص داده شد، همچنین خصوصیات فلورسانسی نمونه­ها پایین بوده که نشان­دهنده حضور کروژن نوع II در سازند گرو است. با توجه به اینکه محیط ته­نشست سازند گرو عمیق بوده است و ورود مواد آلی خشکی وجود نداشته لذا به­دلیل عدم وجود ماسرال ویترینایت، استفاده از مقادیر انعکاس ویترینایت (VRo%) در ارزیابی بلوغ حرارتی مواد آلی میسر نشد. بنابراین، به­منظور ارزیابی بلوغ حرارتی از پارامتر شاخص دگرسایی حرارتی (TAI) و انعکاس بیتومن جامد (BRo%) استفاده شد که غالباً بیانگر اوایل تا اواسط مرحله­ی بلوغ حرارتی (پنجره نفتی) مواد آلی و کروژن نمونه­ها در سازند گرو است. با توجه به پارامتر­های به­دست آمده از پیرولیز راک ایول و نمودار­های مربوطه، کمیت مواد آلی نمونه­های مدنظر در بازه­ی خوب تا بسیار خوب قرار دارند که از نظر کیفیت، کروژن نوع II و II/III را نشان می­دهند. همچنین مقدار شاخص پتانسیل منشأ (SPI) محاسبه شده در این برش برابر با m ton/m2 38/19 بوده که بیانگر شاخص پتانسیل منشأ بالای سازند گرو است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of organic petrography and hydrocarbon potential of the Garau Formation in Aligudarz section, Lorestan

نویسندگان [English]

  • S. Shabrang 1
  • E. Dehyadegari 2
  • M. H. Adabi 3
چکیده [English]

In order to evaluate the hydrocarbon potential of Garau Formation in Aligudarz section, organic petrography analysis and Rock Eval pyrolysis were performed on samples. In this research totally, 15 samples were studied by transmitted, reflected and fluorescence light and also 12 samples using Rock-Eval pyrolysis device. The existence of bituminite was detected in the transmitted light of amorphous organic matter group and their equivalent in reflected light. Also, the fluorescence of all samples was low, which indicates presence of type II kerogen in the Garau Formation. Since the paleo depositional environment of Garau Formation was pelagic (deep marine) with no terrestrial organic matter input so was no chances of existence of vitrinite macerals for reflectance analysis. Hence, in order to evaluate the thermal maturity, the parameter of thermal alteration index (TAI) and solid bitumen reflection (BRo%) were used, which indicate the early to middle stage of thermal maturity (oil window) of samples in the Garau Formation. According to the parameters obtained from Rock Eval pyrolysis and related diagrams, the quantity of organic matter in samples ranged from good to very good and in terms of quality, show type II and II / III kerogen. Finally, the calculated source potential index (SPI) in the studied section is 19.38 m ton / m2 which shows a high source potential index.

کلیدواژه‌ها [English]

  • Rock Eval pyrolysis
  • Organic petrography
  • Solid Bitumen reflection (BRo%)
  • Thermal Alteration Index (TAI)
  • Garau Formation
خانی، ب (1393) ارزیابی ژئوشیمیایی و مدلسازی سیستم هیدروکربنی در رسوبات ژوراسیک میانی و کرتاسه زیرین ناحیه لرستان از دیدگاه ذخایر هیدروکربنی غیرمتعارف، پایان­نامه دکترا،  پژوهشگاه صنعت نفت، تهران، 385 ص.
ذوالفقاری، ز.، فروغی، ف.، قاسمی­نژاد، ا.، یزدی­مقدم، م (1395) زیست­چینه‌نگاری و محیط­رسوبی سازند گرو در چاه A، لرستان مرکزی، شمال غرب زاگرس. دوفصلنامه رخساره‌های رسوبی، شماره­ 1، سال نهم، ص 91-106.
عظام­پناه، ی.، صادقی، ع.، آدابی، م.، جمالی، ا (1391) بایوستراتیگرافی سازند گرو در برش تحت­الارضی چاه نفت, جنوب کرمانشاه. پژوهش­های چینه­نگاری و رسوب­­شناسی (مجله پژوهشی علوم پایه دانشگاه اصفهان)، شماره­ 2، سال بیست و هشتم، ص 69-82.
رستگارکلاته، ا (1395) ارزیابی پتروگرافی- ژئوشیمی آلی پتانسیل تولید حوضه لرستان به­عنوان شیل گازی. پایان­نامه کارشناسی­ارشد، دانشگاه صنعتی شاهرود، 152 ص.
شبرنگ، س، ده­یادگاری، ا.، آدابی، م (1400) ارزیابی محیط رسوبی و ژئوشیمی رسوبی سازند گرو در برش الیگودرز، لرستان. ششمین کنفرانس ملی انجمن رسوب­شناسی ایران، ص 304-310.
قلندری گشتی، پ (1397) چینه­نگاری و ژئوشیمی آلی بازه فهلیان/گرو در یکی از میادین نفتی دشت آبادان. پایان­نامه کارشناسی­ارشد، دانشگاه دامغان، 150 ص.
کمالی، م.، سلگی، ع (1394) ارزیابی ژئوشیمیایی سازند گرو در طاقدیس­های انجیر و کبیرکوه در جنوب غرب ناحیه لرستان. پژوهش نفت، شماره 2-85،  سال بیست و پنجم، ص 145-159.
مطیعی، ه (1374) زمین­شناسی نفت زاگرس، انتشارات سازمان زمین­شناسی و اکتشافات معدنی کشور، جلد 1، 589 ص.
مطیعی، ه (1374) زمین­شناسی نفت زاگرس، انتشارات سازمان زمین­شناسی و اکتشافات معدنی کشور، جلد 2، 500 ص.
مطیعی، ه (1382) زمین­شناسی ایران (چینه­شناسی زاگرس)، انتشارات سازمان زمین­شناسی و اکتشافات معدنی کشور، 583 ص.
موری، ش.، مغفوری­مقدم، ا.، رفیعی، ب.، صداقت­نیا، م (1398) ارزیابی ژئوشیمی آلی نهشته­های سازند گرو با استفاده از داده­های حاصل از پیرولیز راک-اول در مـناطق باخـتر خرم­آباد و شمال باختر کرمانشاه. دوفصلنامه رسوب­شناسی کاربردی، شماره 13، سال هفتم، ص 94-101.
یوسفی، م.، نظری بدیع، ا (1394) ارزیابی خصوصیات ژئوشیمیایی مواد آلی سازند گرو (کرتاسه پیشین) در جنوب لرستان. دوفصلنامه رسوب­شناسی کاربردی، شماره 5، سال سوم، ص 1-11.
Bertrand, R (1993) Standardization of solid bitumen reflectance to vitrinite in some Paleozoic sequences of Canada. Energy Sources, 15: 269-287.
Bertrand, R. and Malo, M (2012) Dispersed organic matter reflectance and thermal maturation in four hydrocarbon exploration wells in the Hudson Bay Basin: regional implications. Geological Survey of Canada.
Bordenave, M. L. and Burwood, R (1990) Source rock distribution and maturation in the Zagros orogenic belt: provenance of the Asmari and Bangestan reservoir oil accumulations. Organic Geochemistry, 16: 369-387.
Behar, F., Beaumont, V. and Penteado, H. D. B (2001) Rock-Eval 6 technology: performances and developments. Oil & Gas Science and Technology, 56: 111-134.
Bordenave, M. L (1993) The sedimentation of organic matter. Applied Petroleum Geochemistry. Paris: Éditions Technip, 15-76.
Colmenero, J. R., Suárez-Ruiz, I., Fernández-Suárez, J., Barba, P. and Llorens, T (2008) Genesis and rank distribution of Upper Carboniferous coal basins in the Cantabrian Mountains, Northern Spain. International Journal of Coal Geology, 76: 187-204.
Cook, A., Hutton. A., and Sherwood, N (1981) Classification of oil shales, bull. Cent. Rech. Exploration-Production Elf-Aquitaine, 5: 353–81.
Cook, A. C. and Sherwood, N. R (1991) Classification of oil shales, coals and other organic-rich rocks. Organic Geochemistry, 17: 211-222.
Dow, W. G (1977) Kerogen studies and geological interpretations. Journal of geochemical exploration, 7: 79-99.
Dow, W. G. and O'Connor, D. I (1982) Kerogen maturity and type by reflected light microscopy applied to petroleum exploration.
Demaison, G. and Huizinga, B. J (1991) Genetic classification of petroleum systems. AAPG bulletin, 75: 1626-1643.
Dembicki, Jr. H (2009) Three common source rock evaluation errors made by geologists during prospect or play appraisals. AAPG bulletin, 93: 341-356.
Espitalie, J., Laporte, J. L., Madec, M., Marquis, F., Leplat, P., Paulet, J. and Boutefeu, A (1977) Rapid method for source rock characterization, and for determination of their petroleum potential and degree of evolution. Oil and Gas Science and Technology Revue, 32: 23-42.
Espitalié, J (1986). Use of Tmax as a maturation index for different types of organic matter. Comparison with vitrinite reflectance. Editions Technip.
Hackley, P. C., Araujo, C. V., Borrego, A. G., Bouzinos, A., Cardott, B. J., Cook, A. C., Eble, C., Flores, D., Gentzis, T., Gonçalves, P.A. and Mendonça Filho, J.G (2015) Standardization of reflectance measurements in dispersed organic matter: Results of an exercise to improve interlaboratory agreement. Marine and Petroleum Geology, 59: 22-34.
Hackley, P. C. and Cardott, B. J (2016) Application of organic petrography in North American shale petroleum systems: A review. International Journal of Coal Geology, 163: 8-51.
Hutton, A., Bharati, S. and Robl, T (1994) Chemical and petrographic classification of kerogen/macerals. Energy & Fuels, 8: 1478-1488.
Hunt, J. M (1996) Petroleum geochemistry and geology, New York, Freeman and Company.
Jacob, H (1989) Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”). International Journal of coal geology, 11: 65-79.
Landis, C. R. and Castaño, J. R (1995) Maturation and bulk chemical properties of a suite of solid hydrocarbons. Organic Geochemistry, 22: 137-149.
Langford, F. F. and Blanc-Valleron, M. M (1990) Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. AAPG bulletin, 74: 799-804.
Lohr, C. D. and Hackley, P. C (2021) Relating Tmax and hydrogen index to vitrinite and solid bitumen reflectance in hydrous pyrolysis residues: Comparisons to natural thermal indices. International Journal of Coal Geology, 242: 103768.
Mastalerz, M., Drobniak, A., Stankiewicz, A. B (2018) Origin, properties, and implications of solid bitumen in source-rock reservoirs: A review. Int. J. Coal Geol, 195: 14–36.
Peters, K. E. and Cassa, M. R (1994) Applied source rock geochemistry: Chapter 5: Part II. Essential elements. AAPG, Special Publication, 11: 116-123.
Peters, K. E (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG bulletin, 70: 318-329.
Peters, K. E., Peters, K. E., Walters, C. C. and Moldowan, J. M (2005) The biomarker guide (Vol. 1). Cambridge university press.
Pearson, D. L (1990) Pollen/spore color “standard”. 2nd Printing of Version 2. Phillips Petroleum Company.
Riediger, C. L (1993) Solid bitumen reflectance and Rock-Eval Tmax as maturation indices: an example from the “Nordegg Member”, Western Canada Sedimentary Basin. International Journal of Coal Geology, 22: 295-315.
Rost, F. W (1995) Fluorescence microscopy, Cambridge, Cambridge University Press.
Rahman, M. and Kinghorn, R. R. F (1995) A practical classification of kerogens related to hydrocarbon generation. Journal of Petroleum Geology, 18: 91-102.
Schmidt, J. S., Menezes, T. R., Souza, I. V. A. F., Spigolon, A. L. D., Pestilho, A. L. S. and Coutinho, L. F. C (2019) Comments on empirical conversion of solid bitumen reflectance for thermal maturity evaluation. International Journal of Coal Geology, 201: 44-50.
Shekarifard, A. Daryabandeh, M. Rashidi, M. Hajian, M. Röth, J (2019) Petroleum geochemical properties of the oil shales from the Early Cretaceous Garau Formation, Qalikuh locality, Zagros Mountains, Iran. International Journal of Coal Geology, 206: 1-18.
Stach, E (1982) Stach’s Textbook of Coal Petrology, Gebruder Borntraeger (Berlin-Stuttgart).
Sýkorová, I., Pickel, W., Christanis, K., Wolf, M., Taylor, G. H. and Flores, D (2005) Classification of huminite—ICCP System 1994. International Journal of Coal Geology, 62: 85-106.
Stocklin, J (1968) Structural history and tectonics of Iran: a review: American Association of Petroleum Geologists Bulletin, 52: 1229-1258.
Sepehr, M., and J. W. Cosgrove (2004) Structural framework of the Zagros Fold-Thrust Belt, Iran: Marine and Petroleum Geology, 21: 829-843.
Smith, J. T (1994) Petroleum System Logic as an Exploration Tool in a Frontier Setting: Chapter 2: Part I. Introduction.
Taylor, G. H., Teichmüller, M., Davis, A. C. F. K., Diessel, C. F. K., Littke, R. and Robert, P (1998) Organic petrology.
Teichmüller (1974MTeichmüllerÜber neue Macerale der Liptinit-Gruppe und die Entstehung von Micrinit. Fortschr. Geology Rheinld. Westf., 24: 37- 64.
Teichmüller, M (1982) Fluoreszenzmikroskopische Änderungen von Liptiniten und Vitriniten mit zunehmendem Inkohlungsgrad und ihre Beziehungen zu Bitumenbildung und Verkokungsverhalten, Geologisches Landesamt Nordrhein-Westfalen, 119p.
Teichmüller, M. and Teichmüller, R (1982) The geological basis of coal formation. Stach's textbook of coal petrology, 3:5-86.
Teichmüller, M. and Wolf, M (1977) Application of fluorescence microscopy in coal petrology and oil exploration. Journal of Microscopy, 109: 49-73.
Tissot, B. P. and Welte, D. H (1984) From kerogen to petroleum. In Petroleum formation and occurrence, New York, Springer, 160-198.
Tissot, B. P. and Welte, D. H (2013) Petroleum formation and occurrence, Berlin, Springer Science and Business Media.
Tyson, R. V (1993) Palynofacies analysis. In Applied micropalaeontology, Netherlands, Springer, 3-191.
Tyson, R. V (1995b) Abundance of organic matter in sediments: TOC, hydrodynamic equivalence, dilution and flux effects. In Sedimentary organic matter, Berlin, Springer, 81-118.
Traverse (1994) Sedimentation of organic particles: Cambridge, Cambridge University Press, 547p.
Tissot, B., Demaison, G., Masson, P., Delteil, J. R. and Combaz, A (1980) Paleoenvironment and petroleum potential of middle Cretaceous black shales in Atlantic basins. AAPG Bulletin, 64: 2051-2063.
Wang, Y., Wang, Z., Zhao, C., Wang, H., Liu, J., Lu, J. and Liu, D (2007) Kinetics of hydrocarbon gas generation from marine kerogen and oil: implications for the origin of natural gases in the Hetianhe gasfield, Tarim Basin, NW China. Journal of Petroleum Geology, 30: 339-356.
Waples, D. W (2013) Geochemistry in petroleum exploration. Springer Science and Business Media.
Waples, D. W., Machihara, T (1991) Biomarkers for geologists – a practical guide to the application of steranes and triterpanes in petroleum geology. American Association of Petroleum Geologists, Bulletin, Methods in Exploration, 91 p.
Wei, L., Wang, Y. and Mastalerz, M (2016) Comparative optical properties of macerals and statistical evaluation of mis-identification of vitrinite and solid bitumen from early mature Middle Devonian–Lower Mississippian New Albany Shale: Implications for thermal maturity assessment. International Journal of Coal Geology, 168: 222-236.