بررسی اثرات مونسون بر مشخصه‌های بافتی رسوبات بخش ایرانی فلات قاره شمال دریای عمان (خلیج چابهار تا پسابندر)

نویسندگان

1 دانشجوی دکترا رسوب‌شناسی و سنگ‌شناسی رسوبی، دانشگاه هرمزگان و کارشناس پژوهشی ایستگاه پژوهش و فناوری اقیانوس‌شناسی و علوم جوی، چابهار، ایران

2 دانشیار گروه زمین‌شناسی، دانشکده علوم، دانشگاه هرمزگان، بندرعباس، ایران

3 استادیار پژوهشگاه ملی اقیانوس‌شناسی و علوم جوی، ایستگاه پژوهش و فناوری اقیانوس‌شناسی و علوم جوی، بندرعباس، ایران

4 دکترا رسوب‌شناسی و سنگ‌شناسی رسوبی، گروه زمین‌شناسی، دانشگاه هرمزگان، بندرعباس، ایران

چکیده

در این پژوهش، تاثیر پدیده مونسون بر مشخصه‌های بافتی رسوبات سواحل ایرانی دریای عمان بررسی گردید. بدین منظور از 13 ایستگاه نمونه­برداری‌های لازم بر اساس استانداردهای رسوب­شناسی دریایی انجام شد. بررسی میزان اندازه ذرات در نمونه‌های پیش و پس از وقوع مونسون نشان داد که بافت این رسوبات ماسه، ماسه­رسی، رس­ماسه‌ای و رس می‌باشد. آنالیز دانه‌بندی نشان داد مقدار ماسه و رس در نمونه‌های پیش از مونسون ایستگاه‌های کم عمق و نزدیک به ساحل به ترتیب بین 43 تا 97 و صفر تا 27 درصد متغیر است. این مقادیر در ایستگاه‌های ژرف و دور از ساحل به ترتیب بین 8 الی 45 و 54 الی 82 درصد در تغییر است. مقادیر ماسه و رس در نمونه‌های پس از مونسون ایستگاه‌های کم ژرفا و نزدیک به ساحل به ترتیب بین 68 تا 96 درصد و صفر تا 13 درصد و در ایستگاه‌های ژرف و دور از ساحل در نمونه‌های پس از مونسون بین 8 تا 22 درصد و 58 تا 86 درصد در نوسان است. میزان مواد آلی رسوبات در بیشتر ایستگاه‌های مطالعاتی بین 1 تا 3 درصد متغیر و در محدوده طبیعی بود. افزایش ماده آلی تحت تاثیر فعالیت‌های انسانی و بافت دانه ریز رسوبات می‌باشد و کاهش آن نیز می‌تواند ناشی از ورود پسآب شور به محیط خلیج باشد. میزان کربنات کلسیم در رسوبات ارتباط نزدیکی با میزان ماسه موجود در رسوبات دارد. در ایستگاه‌های رمین و تیس که انرژی امواج در آن‌ها بیشتر از ایستگاه‌های داخل خلیج چابهار است، میزان کربنات کلسیم بیشتری داشته و برعکس میزان مواد آلی به دلیل رقیق­شدگی حاصل از ورود رسوبات خشکی‌زاد بیشتر و زدایش رسوبات دانه‌ریز حاوی مواد آلی کمتر می‌باشد. جورشدگی نمونه‌ها از نوع متوسط- خوب بوده و نمونه رسوبات ایستگاه‌های کم ژرف نزدیک ساحل و ژرف دور از ساحل به ترتیب دارای کج­شدگی منفی و مثبت بوده و شاخص کشیدگی در بیشتر نمونه‌ها از نوع بسیار کشیده است. با نفوذ بادهای موسمی اقیانوس هند به سواحل دریای عمان و به طبع آن وزش بادهای نسبتاً شدید با جهت جنوب باختری- شمال خاوری، موجب مواج شدن دریا در تابستان و باعث فرسایش نهشته‌های آواری درشت دانه تا ریزدانه نواحی ساحلی گردیده که یکی از منابع مهم رسوبات دریایی محدوده مطالعاتی هستند. این یافته‌ها تاکیدی است بر عملکرد پدیده مونسون بر ویژگی‌های بافتی رسوبات فلات قاره شمال دریای عمان.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effects of monsoon on the textural characteristics of sediments sediments in the Iranian part of the continental plateau of the North Sea of Oman (Chabahar Bay to Pasbandar)

نویسندگان [English]

  • M. Afarin 1
  • P. Rezaee 2
  • M. A. Hamzeh 3
  • S. A. Jooybari 4
1 Ph. D. student in Sedimentology and sedimentary petrology, University of Hormozgan and Research stuff, Research and Technology Station of Oceanography and Atmospheric Sciences, Chabahar, Iran
2 Assoc. Prof., Dept., of Geology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
3 Assist. Prof., National Research Institute of Oceanography and Atmospheric Sciences, Research and Technology Station of Oceanography and Atmospheric Sciences, Bandar Abbas, Iran
4 Ph. D in Sedimentology and sedimentary petrology, Dept., of Geology, University of Hormozgan, Bandar Abbas, Iran
چکیده [English]

In this research, the effect of monsoon phenomenon on the textural characteristics of the sediments of Iranian coasts of the Oman Sea was investigated. For this purpose, necessary sampling was done from 13 stations based on marine sedimentological standards. According to the amounts of sand, silt and clay in the pre-monsoon and post-monsoon samples, the sedimentary types of sand, clayey sand, sandy clay and clay were identified in the studied stations. Granulometric analysis showed that the amount of sand and clay in pre-monsoon samples of shallow and near-shore stations (Tiss, Desalination, Center of the Bay, Ramin, Beris and Pasabandar) range from 43 to 97 and 0 – 27%, respectively. On the other hand, these values change between 8 – 45% and 54 - 82 % in deep and offshore stations, respectively. The amount of sand and clay in post-monsoon samples of shallow and near-shore stations vary between 68% - 96% and 0% - 13%, respectively. The amount of sand and clay in deep stations and far from the coast in post-monsoon samples fluctuates between 8-22% and 58-86%. The amount of organic matter in sediments varies between 1 and 3% in most of the studied stations and is within the normal range. This amount showed a slight increase in Konarak and Ramin stations due to human pollutants and fine-grained sedimentary texture. The low amount of organic matter in the desalination station can be caused by the inflow of more saline wastewater into the bay environment. The calcium carbonate content in the sediments is closely related to the amount of sand in the sediments. In Ramin and Tiss stations, where the waves are stronger than the Chabahar bay, they have more calcium carbonate, and on the contrary, the amount of organic matter is higher due to the dilution resulting from the entry of terrigenous sediments and carrying organic matter bearing Fine-grained sediments. The sorting of the samples is medium-good, and the sediment samples from the shallow stations near the coast and deep offshore have negative and positive skewness, respectively, and the elongation index in most of the samples is very elongated. Also, due to the intrusion of the Indian Ocean monsoon winds to the coasts of the Oman Sea in this region and the relatively strong southwest-northeast direction winds, it causes the sea to swell in the summer and erodes the sandstone geological formations of the coastal areas, which is one of the important sources of marine sediments in the study area. These findings emphasize the effect of the monsoon phenomenon on the textural characteristics of the continental plateau sediments of the North Sea of Oman.

کلیدواژه‌ها [English]

  • Physical Characteristics
  • Sediment
  • Monsoon
  • Coast of Oman
Afarin, M., and Hamzeh, M. A (2021) The Effects of Monsoon waves on sedimentological characteristics in the Chabahar bay sediments. Applied Sedimentology, 9(18): 34-50. doi: 10.22084/psj.2021.23353.1267. (in Persian).
Afarin, M., Hamzeh, M. A., Negarestan, H (2015) Sedimentological and Geomorphological Classification of Chabahar Coastal Area (Chabahar-Gawater). Journal of the Persian Gulf (Marine Science), 6 (21): 51-63.
ASTM (1988) Designation D2216-80, Standard method for laboratory determination of water (moisture) content of soil, rock and soil-aggregate mixtures. In: 1988 Annual book of ASTM standards, Construction, soil and rock, building stones, geotextiles, 04.08: 4-262.
Athira, T. R., Nefla, A., Shifa, C. T., Shamna, H., Aarif, K. M., AlMaarofi, S. S., & Muzaffar, S. B (2022) The impact of long-term environmental change on zooplankton along the southwestern coast of India. Environmental Monitoring and Assessment, 194(4): 316. https://doi.org/10.1007/s10661-022-09921-w.
Azidane, H., Michel, B., Bouhaddioui, M. E., Haddout, S., Magrane, B., & Benmohammadi, A (2021) Grain size analysis and characterization of sedimentary environment along the Atlantic Coast, Kenitra (Morocco). Marine Georesources & Geotechnology, 39(5): 569-576.
Cheng, Z., Jalon-Rójas, I., Wang, X. H., & Liu, Y (2020) Impacts of land reclamation on sediment transport and sedimentary environment in a macro-tidal estuary. Estuarine, Coastal and Shelf Science, 242: 106861. doi.org/10.1016/j.ecss.2020.106861.
Clemens, S. C., Yamamoto, M., Thirumalai, K., Giosan, L., Richey, J. N., Nilsson-Kerr, K., & McGrath, S. M (2021) Remote and local drivers of Pleistocene South Asian summer monsoon precipitation: A test for future predictions. Science Advances, 7(23): eabg3848. doi 10.1126/sciadv. abg3848.   
Das, G. K (2023) Granulometry of Beach Sands. In Coastal Environments of India: A Coastal West Bengal Perspective (pp. 79-94). Cham: Springer International Publishing, 225p.
Deng, H., He, J., Feng, D., Zhao, Y., Sun, W., Yu, H., and Ge, C (2021) Microplastics pollution in mangrove ecosystems: a critical review of current knowledge and future directions. Science of the Total Environment, 753: 142041.
Duong, H. T (2018) Observation of monsoon and typhoon-driven hydro-morphodynamics at a tropical low-tide terraced beach: a case study at Nha Trang, Vietnam (Doctoral dissertation, Université Paul Sabatier-Toulouse III).
Farrell, E. J., Sherman, D. J., Ellis, J. T., and Li, B (2012) Vertical distribution of grain size for wind-blown sand, Aeolian Research, 51-61. doi.org/10.1016/j.aeolia.2012.03.003.
Fatima, D. Q., and Jamshed, A (2020) The political and economic significance of Indian Ocean: An analysis. South Asian Studies, 30(2).
Folk, R., L (1980) Petrology of sedimentary rocks. Austin, Tex., Hemphill Publishing, Co. 184p.
Ghadeer, S (2022) Grain size analysis and characterization of sedimentary environment of the surface sediments along the Syrian Coast, Umm al-Tuyour (Latakia). Marine Georesources & Geotechnology, 1-8. doi.org/10.1080/1064119X.2022.2152766.
Ghorbani, M (2019) Lithostratigraphy of Iran (p. 274). Cham: Springer,306p.
Guan, Q., Zhang, J., Wang, L., Pan, B., Gui, H., and Zhang, C (2013) Discussion of the relationship between dustfall grain size and the desert border, taking the southern border of the Tengger Desert and the southern dust deposit area as an example, Palaeogeography, Palaeoclimatology, Palaeoecology, 1-7.
Haghbin, M., Rezaei, K., Bayat, M., Rafiei, B., and Hashemi Ghasem Abady, A (2016) Tsunami event Sedimentology evidence in Makran coasts, Balouchestan. Applied Sedimentology, 4(7): 82-100. doi: 10.22084/psj.2016.1662 (in Persian).
Hamzeh, M. A., Beskeleh, G., and Habibi, P (2014) Geochemical investigation of the sediments of the coasts of Oman Sea using Geographical Information System (GIS), (first phase: Chabahar to Gwatar). National Research Institute of Oceanography and Atmospheric Sciences. Code: 01-021-390 (in Persian).
Heiri, O., Lotter, A. F., Lemcke, G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results: Journal of Paleolimnology, 25: 101-110. doi.org/10.1023/A:1008119611481
Huang, Y., Xiao, X., Effiong, K., Xu, C., Su, Z., Hu, J., & Holmer, M (2021) New insights into the microplastic enrichment in the blue carbon ecosystem: evidence from seagrass meadows and mangrove forests in coastal South China Sea. Environmental Science & Technology, 55(8): 4804-4812. doi.org/10.1021/acs.est.0c07289.
Joseph, P., Nandan, S. B., Sreelekshmi, S., Jayachandran, P. R., Varghese, R., Preethy, C. M., and Adarsh, K. J (2021) Benthic biocoenosis: influence of edaphic factors in the tropical mangroves of Cochin, Southern India. Tropical Ecology, 62: 463-478. doi.org/10.1007/s42965-021-00162-5.
Keesari, T., Chidambaram, S., Pethaperumal, S., Kamaraj, P., Sharma, D. A., & Sinha, U. K (2022) Arsenic distribution in sediments of multi-tier sedimentary formation of coastal Pondicherry, India–Implications on groundwater quality. Marine Pollution Bulletin, 174: 113193. doi.org/10.1016/j.marpolbul.2021.113193.
Lee, G. and Stokes, J (2006) Marine science: an illustrated guide to science. Chelsea House, New York,512p.
Lewis, D. W., and Mc Conchie, D (1994) Analytical sedimentology, Chapman and Hall, London, UK, 197p.
Liu, F., Wang, B., Ouyang, Y., Wang, H., Qiao, S., Chen, G., and Dong, W (2022) Intraseasonal variability of global land monsoon precipitation and its recent trend. npj Climate and Atmospheric Science, 5(1): 30. doi.org/10.1038/s41612-022-00253-7.
Liu, J. P., Kuehl, S. A., Pierce, A. C., Williams, J., Blair, N. E., Harris, C., and Aye, Y. Y (2020) Fate of Ayeyarwady and Thanlwin rivers sediments in the Andaman Sea and Bay of Bengal. Marine Geology, 423: 106137. doi.org/10.1016/j.margeo.2020.106137.
Malvarez, G. C., Cooper, J. A. G., & Jackson, D. W. T (2001) Relationships between wave-induced currents and sediment grain size on a sandy tidal-flat”, Journal of Sedimentary Research, 5: 705-712. doi.org/10.1306/2DC40961-0E47-11D7-8643000102C1865D.
Merkus, H., G (2009) Particle Size Measurements: Fundamentals, Practice, Quality. Springer Netherlands, 534p.
Miocic, J. M., Sah, R., Chawchai, S., Surakiatchai, P., Choowong, M., & Preusser, F (2022) High resolution luminescence chronology of coastal dune deposits near Chumphon, Western Gulf of Thailand. Aeolian Research, 56: 100797. doi.org/10.1016/j.aeolia.2022.100797.
Mohammadi, A (2016) Investigation of sedimentology and sedimentary geochemistry of Chabahar Bay, scale 1:50000. Internal report of the Geology and Mineral Exploration Organization of the country, Marine Geology Management, 87 p. (in Persian).
Ramamohanarao, T., Sairam, K., Venkateswararao, Y., Nagamalleswararao, B., and Viswanath, K (2003) Sedimentological characteristics and depositional environment of Upper Gondwana rocks in the Chintalapudi sub-basin of the Godavari valley, Andhra Pradesh, India, Journal of Asian Earth Sciences, 6: 691-703. doi.org/10.1016/S1367-9120(02)00139-6.
Ramanathan, A. L., Rajkumar, K., Majumdar, J., Singh, G., Behera, P. N., Santra, S. C., and Chidambaram, S (2009) Textural characteristics of the surface sediments of a tropical mangrove sundarban ecosystem India, Indian Journal of Marine Sciences, 4: 397-403.
Rezaei, M., Kafaei, R., Mahmoodi, M., Sanati, A. M., Vakilabadi, D. R., Arfaeinia, H., ... and Boffito, D. C (2021) Heavy metals concentration in mangrove tissues and associated sediments and seawater from the north coast of Persian Gulf, Iran: Ecological and health risk assessment. Environmental nanotechnology, monitoring & management, 15: 100456. doi.org/10.1016/j.enmm.2021.100456.
Rubin, D. M., Lapôtre, M. A. G., Stevens, A. W., Lamb, M. P., Fedo, C. M., Grotzinger, J. P., & Malin, M. C (2022) Ancient winds, waves, and atmosphere in Gale crater, Mars, inferred from sedimentary structures and wave modeling. Journal of Geophysical Research: Planets, 127(4): e2021JE007162. doi.org/10.1029/2021JE007162.
Saket, A., Etemad-Shahidi, A (2012) Wave energy potential along the northern coasts of the Gulf of Oman, Iran. Renewable Energy, 40: 90-97. doi.org/10.1016/j.renene.2011.09.024
Scheffers, A., Engel, M., Scheffers, S., Squire, P., Kelletat, D (2012) Beach ridge systems, archives for Holocene coastal events? Prog. Phys. Geogr. 36: 5–37. doi.org/10.1177/030913331141954.
Schott, F. A., and McCreary, J. P (2001) The monsoon circulation of the Indian Ocean, Prog. Oceanogr., 51: 1– 123.
Sengupta, D., R. Senan, and Goswami, B. N (2001) Origin of intraseasonal variability of circulation in the tropical central Indian Ocean, Geophys. Res. Lett, 28: 1267– 1270. doi.org/10.1029/2000GL012251.
Shah-Hosseini, M., Ghanavati, E., Morhange, C., Naderi Beni, A., Lahijani, H. A., Hamzeh, M. A (2018) The evolution of Chabahar beach ridge system in SE Iran in response to Holocene relative sea level changes. Geomorphology, 318: 139–147.
Shetty, A., & K. S. J (2021) Proxies for sediment transport patterns and environmental characteristics: A case study of Karnataka coast, India. Journal of Sedimentary Environments, 6: 107-120. doi.org/10.1007/s43217-020-00038-z.
Shi, C., Ding, H., Zan, Q., and Li, R (2019) Spatial variation and ecological risk assessment of heavy metals in mangrove sediments across China. Marine pollution bulletin, 143: 115-124. doi.org/10.1016/j.marpolbul.2019.04.043.
Snelder, T. H., Lamouroux, N., & Pella, H (2011) Empirical modelling of large scale patterns in river bed surface grain size, Geomorphology, 3(4): 189-197.
Syvitski, J. P. M. & Milliman, J. D (2007) Geology, geography, and human battle for dominance over the delivery of fluvial sediment to the coastal ocean, Journal of Geology, 1: 1-19. doi.org/10.1086/509246.
Trott, C. B., Subrahmanyam, B., Chaigneau, A., & Delcroix, T (2018) Eddy tracking in the northwestern Indian Ocean during southwest monsoon regimes. Geophysical Research Letters, 45(13): 6594-6603. doi.org/10.1029/2018GL078381.
Valsangkar, A. J (1992) Principles, methods and applications of particle size analysis. Canadian Geotechnical Journal, 29 (6): 92-115.
Xu, N., Zhu, Z., Gao, W., Shao, D., Li, S., Zhu, Q., & Yang, Z (2023) Effects of waves, burial depth and material density on microplastic retention in coastal sediments. Science of The Total Environment, 864: 161093.
Yu, J., Ding, Y., & Cheng, H (2021) Sediment textural characteristics and spatial variability of embayed sandy beaches in the west Guangdong. Regional Studies in Marine Science, 45: 101801. doi.org/10.1016/j.rsma.2021.101801.