اعتبارسنجی استفاده از الگوریتم های زمین‌آماری تصادفی در مدل‌سازی رخساره الکتریکی در مخزن سروک یکی از میادین نفتی ایران

نویسندگان

1 دانشجوی دکترا مهندسی اکتشاف نفت، دانشکده مهندسی نفت، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 استاد گروه مهندسی اکتشاف نفت، دانشکده مهندسی نفت، دانشگاه صنعتی امیرکبیر، تهران، ایران

3 دانشیار گروه زمین‌شناسی، دانشکده علوم، دانشگاه تبریز، تبریز، ایران

4 شرکت مهندسی و توسعه سروک آذر، تهران، ایران

چکیده

ساخت انواع مدل­های رخساره‌ای جهت اعمال تاثیر زمین­شناسی و رسوب­شناسی و کنترل توزیع خواص پتروفیزیکی در توزیع زمین‌آماری خواص مخزنی در مدل‌سازی استاتیک ضروری می­باشد. در این مطالعه، به منظور استفاده از مدل رخساره‌ای در مدل‌سازی استاتیک، نخست رخساره الکتریکی با استفاده از روش خوشه‌سازی چند تفکیکی بر پایه گراف MRGC تهیه گردید. رخساره­های حاصل، با استفاده از الگوریتم­های زمین‌آماری مختلف در نرم­افزار پترل، به صورت سه­بعدی مدل‌­سازی و سپس نتایج حاصل از استفاده از روش­های مختلف توزیع، مورد مقایسه قرار گرفتند. براساس آنالیز رخساره­های الکتریکی، نخست پنج رخساره الکتریکی (مشتمل بر دو رخساره غیرمخزنی و سه رخساره مخزنی) تشخیص داده شدند. به منظور مقایسه تاثیر الگوریتم­های مختلف توزیع رخساره­ای، سه رخساره مخزنی باهم و دو رخساره غیرمخزنی با همدیگر تلفیق شده و به صورت دو رخساره کلی مخزنی و غیرمخزنی در مدل‌سازی رخساره‌ای توزیع گشتند. همچنین از داده‌های لرزه‌ای جهت ساخت نقشه­های روندی برای توزیع بهتر رخساره‌ها و ساخت رخساره لرزه‌ای استفاده گردید. به منظور بررسی میزان تاثیر الگوریتم­های متعدد به کار گرفته شده در مدل‌سازی رخساره‌ای بر روی توزیع تخلخل، پس از ساخت پنج نوع مدل رخساره‌ای با الگوریتم­های مختلف، از آن­ها در توزیع تخلخل استفاده گردید. براساس این مطالعه، در صورتی که داده‌های رخساره الکتریکی بدون استفاده از داده‌های لرزه‌ای توزیع شوند، عدم قطعیت بالایی داشته و ممکن است از دقت توزیع مدل­های تخلخل وابسته کاسته شود. در این مطالعه مشخص شد که در مدل‌سازی رخساره‌ای با استفاده از روش شبیه­­سازی شاخص ترتیبی (SIS)، در نظر گرفتن نقشه­های روندی تهیه شده براساس داده­های لرزه‌ای باعث افزایش دقت آن می­شود. همچنین ساخت رخساره لرزه‌ای و استفاده از آن در توزیع تخلخل به دلیل ارتباط بالای داده‌های مقاومت صوتی با تغییرات تخلخل، به عنوان بهترین روش رخساره‌ای جهت کنترل توزیع تخلخل پیشنهاد می­گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Validation of applying stochastic geostatistical algorithms in electrofacies modeling in Sarvak reservoir of an Iranian oilfield

نویسندگان [English]

  • V. Mehdipour 1
  • A. R. Rabbani 2
  • A. Kadkhodaie 3
  • H. Karkooti 4
  • M. Shourab 4
1 Ph. D. student of Petroleum exploration engineering, Dept., of Petroleum Engineering, Amirkabir University of technology, Tehran, Iran
2 Prof., Dept., of Petroleum exploration engineering, Dept., of Petroleum Engineering, Amirkabir University of technology, Tehran, Iran
3 Assoc. Prof., Dept., of Geology, Faculty of science, University of Tabriz, Tabriz, Iran
4 Sarvak Azar Engineering and Development Company (SAED), Tehran, Iran
چکیده [English]

Constructing different facies models is necessary in reservoir static modeling to consider the effect of geology and sedimentology and also control the geostatistical distribution of petrophysical properties. In this study, electrofacies analysis has been done using MRGC (Multi-resolution graph-based clustering) method to be used in static modeling. Then, the resulting facies were modeled and compared together by applying different geostatistical stochastic algorithms in Petrel software. Based on electrofacies analysis, first five electrofacies (including two non-reservoir facies and three reservoir facies) were identified. In order to compare the effect of different facies distribution algorithms, three reservoir facies and two non-reservoir facies were combined and then two resulted facies were distributed as reservoir and non-reservoir facies in facies modeling. Seismic data was also applied for seismic facies construction and also to construct trend maps for appropriate facies distribution. In order to investigate the effect of five applied different geostatistical algorithms used in facies modeling on porosity distribution, the constructed facies models were used for porosity modeling. According to this study, the uncertainty of electrofacies modeling without applying seismic data increases which in turn reduces the accuracy of porosity models. In addition, electrofacies modeling via considering the sequential indicator simulation (SIS) algorithm and applying the seismic trend maps, enhance the accuracy of the porosity model. Moreover, this study showed, construction the seismic facies is the best method for facies modeling to be used for porosity modeling due to the high correlation coefficient between acoustic impedance and porosity.

کلیدواژه‌ها [English]

  • Sarvak reservoir
  • Static model
  • Seismic facies
  • Porosity
  • MRGC
Afshar Harb, A (2003) Petroleum Geology Books. Publications PNU, Iran. (In Persian).
Aghanabati, A (2006) Geology of Iran. Geological Survey of Iran, Tehran, 586. (In Persian).
Beucher, H., Renard, D (2016) Truncated Gaussian and derived methods. Comptes Rendus Geoscience, 348 (7), 510-519.‏ doi.org/10.1016/j.crte.2015.10.004.
Casini, G., Gillespie, P. A., Verges, A., Romaire, I., Fernandez, N., Casciello, E., Saura, E., Mehl, C., Homke, S., Embry, J. C., Aghajari, L., And Hunt, D. W (2011) Sub-seismic fractures in foreland fold and thrust belts: insight from the Lurestan Province, Zagros Mountains, Iran. Petroleum Geoscience. 17: 263–282. doi.org/10.1144/1354-079310-043.
Deutsch, C. V (2002) Geostatistical Reservoir Modeling, Oxford Univrsity Press, 337 p.
Evans Annan, B., Aidoo, A., Ejeh, C., Emmanuel, A., & Ocran, D (2019) Mapping of porosity, permeability and thickness distribution: application of geostatistical modeling for the jubilee oilfield in Ghana. Geosciences, 9(2): 27-49.‏ doi.org/10.5923/j.geo.20190902.01.
GhojehBeyglou, M (2021) Geostatistical modeling of porosity and evaluating the local and global distribution. Journal of Petroleum Exploration and Production Technology, 11(12): 4227-4241.‏ doi.org/10.1007/s13202-021-01308-w.
Hosseini, K., Rezaee, P., & Kazem Shiroodi, S (2020) Analysis of the electrofacies, flow units and assessment of the reservoir potential of the Mishrif Formation (Cenomanian-Turonian) in the Esfand oil field, Persian Gulf. Applied Sedimentology, 8(15): 46-64. (in Persian).
      doi.org/10.22084/psj.2020.19710.1214.
Kadkhodaie-Ilkhchi, R. and Kadkhodaie, A. and Rezaee, M. R. and Mehdipour, V (2019) Unraveling the reservoir heterogeneity of the tight gas sandstones using the porosity conditioned facies modeling in the Whicher Range field, Perth Basin, Western Australia. Journal of Petroleum Science and Engineering. 176: 97-115. doi.org/10.1016/j.petrol.2019.01.020.
Mariethoz, G., Caers, J (2015) Multiplepoint geostatistics, John Wiley & Sons, Ltd, USA.
Mehdipour, V., Hashemiyan, K (2014) Comparison of static reservoir modeling using PETREL versus IRAP_RMS, NIOC Publication (Ekteshaf & Tolid), 121: 42-38. (in Persian).
Mehdipour, V., Rabbani, A., Kadkhodaie, A (2022) Porosity Modeling Using Simultaneously Seismic Attribute and Electrofacies Data in Sarvak Reservoir of an Iranian Oil Field. Journal of Petroleum Research, 32: 113-128. (in Persian).
Motiee, H (1993) Zagros Stratigraphy. Iranian Geological Survey, Tehran, Iran. 536 p. (in Persian).
Pyrcz, M., Deutsch, C (2014) Geostatistical reservoir modeling. Oxford University Press.
Radwan, A. E (2022) Three-dimensional gas property geological modeling and simulation. In Sustainable Geoscience for Natural Gas Subsurface Systems (pp. 29-49). Gulf Professional Publishing.‏ doi.org/10.1016/B978-0-323-85465-8.00011-X
Selley, R. C (1994) Ancient Sedimentary Environment. 4ed., Champman & Hall, London, 300 P.
Serra, O. & Abbot, H (1982) The contribution of logging data to sedimentology and stratigraphy. SPE. 55th Annual Fall Technical Conference and Exhibition, Dallas, Texas, 117-131. doi.org/10.2118/9270-PA
Sfidari, E., Kadkhodaie-Ilkhchi, A., & Najjari, S (2012) Comparison of intelligent and statistical clustering approaches to predicting total organic carbon using intelligent systems. Journal of Petroleum Science and Engineering, 86: 190-205. doi.org/10.1016/j.petrol.2012.03.024.
Sharland, P. R., Archer, R., Casey, D. M., Davies, R. B., Hall, S. H., Heward, A. P., Simmons, M. D (2001) Sequence stratigraphy of the Arabian Plate. GeoArabia, 2: 371. doi.org/10.2113/geoarabia0901199.