ریزرخساره‌ها و محیط رسوبی رسوبات تریاس زیرین سازند الیکا در برش زال، ناحیه جلفا، شمال غرب ایران

نویسندگان

1 استادیار گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه لرستان، خرم‌آباد، ایران

2 دانش‌آموخته دکترا، گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه لرستان، خرم‌آباد، ایران

چکیده

یکی از کامل‌ترین توالی‌های رسوبی پرمین بالایی- تریاس زیرین در برش زال در ناحیه جلفا در شمال غرب ایران قرار گرفته است. این برش جهت تعیین تغییرات ریزرخساره و محیط رسوبی در بالاترین بخش پرمین بالایی و در طول تریاس زیرین مورد مطالعه قرار گرفت. تغییرات رخساره‌ای از نهشته‌های عمیق بخش‌های بالایی آهک پاراتیرولیتس‌دار به رخساره رس مرزی بعد از انقراض به سن انتهایی‌ترین بخش چنگسینگین به لحاظ لیتولوژیکی و محتویات فونایی بسیار بارز می‌باشد. این تغییر هر چند که به نظر می‌رسد تا حدودی با کم عمق شدن آب دریا همراه باشد اما آثاری از هوازدگی و خروج از آب را نشان نمی‌دهد. با شروع تریاس اگرچه میکروگاستروپود پکستون و بایوکلاستیک وکستون در قاعده سازند الیکا در برش زال دارای ظاهر لخته‌ای می‌باشند که منشا میکروبیال را پیشنهاد می‌کند ولی هیچگونه تشکیلات میکروبیال مشخصی نظیر ترومبولیت­ها مشاهده نمی‌شود. فابریک اسفنج کراتوس که قبلا تنها در بالاترین بخش آهک پاراتیرولیتس‌دار در برش زال گزارش شده بود هم در رخساره رس مرزی و هم در لایه‌های قاعده‌ای سازند الیکا به عنوان یک ویژگی بعد از انقراض برای اولین بار در این برش گزارش می‌شود. گذر از پرمین بالایی به تریاس زیرین در برش مورد مطالعه با تغییرات رخساره‌ای بارز از محیط عمیق به محیط کم عمق شلف درونی همراه می‌باشد. در برش زال ظهور کربنات‌های میکروبیال در لایه‌های بالایی بخش زیرین و در بخش میانی و بالایی تریاس زیرین سازند الیکا می‌باشد که بر خلاف گزارش‌های قبلی عمدتا بصورت استروماتولیت بوده و بصورت محدودتر شامل ترومبولیت و یا بصورت میکریت لخته‌ای و کورتویید مشاهده می‌شود. مطالعه ریزرخساره‌های تریاس زیرین در برش مربوطه حاکی از محیط کم عمق با نوسانات انرژی در بخش‌های مختلف آن نظیر مادستون و بایوکلاستیک وکستون (انرژی کم)، تشکیلات میکروبیال (انرژی متوسط) و  اینتراکلاستیک فلوتستون و ااییدال گرینستون (انرژی بالا) می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Microfacies and depositional environment of the Lower Triassic deposits of the Elika Formation at the Zal section, Julfa area, NW of Iran

نویسندگان [English]

  • S. Arefifard 1
  • S. Shahinfar 2
1 Assist. Prof., Dept., of Geology, Faculty of Sciences, Lorestan University, Khorramabad, Iran
2 Ph. D. (graduated), Dept., of Geology, Faculty of Sciences, Lorestan University, Khorramabad, Iran
چکیده [English]

One of the most complete sedimentary successions of the Upper Permian-Lower Triassic is located at Zal section, in NW Iran. This section was examined in order to determine the microfacies changes and depositional environment in uppermost Permian and through the entire Lower Triassic. The microfacies change from deep deposits of the uppermost portion of the Paratirolites Limestone to the upper Changhsingian Boundary Clay post-extinction facies is sharp lithologically and in terms of faunal content. This change appears to be associated with shallowing but there is no evidence of erosion or subaerial exposure. Despite of the presence of microgastropod packstone and bioclastic wackestone with clotted appearance in their micritic matrix, which is indicative of microbial origin, at the beginning of Triassic at the Zal section, but no microbial buildups such as thrombolite are observable in the lowermost beds of the Elika Formation. Keratos sponge fabric, which has been previously reported only from the uppermost beds of the upper Changhsingian Paratirolites Limestone at Zal section, has been found both in uppermost Changhsingian Boundary Clay and in lowermost beds of the Lower Triassic Elika Formation as post-extinction facies. Upper Permian to Lower Triassic transition at Zal section is associated with considerable microfacies change from deep water setting to shallow water inner shelf setting. Microbial carbonates appear in the upper beds of the lower part and in the middle and upper parts of the Lower Triassic Elika Formation at Zal section, which unlike previous reports is mainly in the form of stromatolite, and in a more limited way includes thrombolite, clotted micrite and cortoids. The microfacies study of the Lower Triassic Elika Formation shows the prevalence of a shallow water environment with energy fluctuations in different parts such as mudstone and bioclastic wackestone (low energy), microbial buildups (medium energy) and intraclastic floatstone and ooidal grainstone (high energy).

کلیدواژه‌ها [English]

  • Elika Formation
  • Lower Triassic
  • Environmental changes
  • Microbial carbonates
  • End-Permian extinction
Alavi, M (1991) Tectonic map of the Middle East, Geological survey of Iran. Scale: 1, 5000000.
Alavi, M (1996) Tectonostratigraphic synthesis and structural style of the Alborz Mountain system in northern Iran. Journal of Geodynamics, 21 (1): l-33. doi.org/10.1016/0264-3707(95)00009-7.
Algeo, T. J., Twitchett, R. J (2010) Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences: Geology, 38: 1023-1026. doi.org/10.1130/G31203.1.
Algeo, T. J., Chen, Z. Q., Fraiser, M. L., Twitchett, R. J (2011) Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 308: 1-11. doi.org/10.1016/j.palaeo.2011.01.011.
Arefifard, S (2017) Foraminiferal-based paleobiogeographic reconstructions in the Carboniferous of Iran and its implications for the Neo-Tethys opening time: a synthesis. Geologica Acta, 15 (2): 1-17. 10.1344/GeologicaActa2017.15.2.5.
Arefifard, S., Baud, A (2022) Depositional environment and sequence stratigraphy architecture of continuous Upper Permian and Lowermost Triassic deep marine deposits in NW and SW Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 603: 111187. doi.org/10.1016/j.palaeo.2022.111187.
Babakhui, G., Adabi, M. H., Moalemi, A., Lotfpour, M (1386) Determining the primary mineralogical composition of the carbonates of the lower part of Elika Formation in Jaban region using geochemical and petrographic studies, 26th Conference of Earth Sciences, Geological Survey and Mineral Exploration of Iran, Tehran (in Persian).
Baud, A., Richoz, S., Beauchamp, B., Cordey, F., Grasby, S., Henderson, C.M., Krystyn, L., Nicora, A (2012) The Buday'ah Formation, Sultanate of Oman: a Middle Permian to Early Triassic oceanic record of the Neotethys and the late Induan microsphere bloom. Journal of Asian Earth Sciences, 43 (1): 130-144. doi.org/10.1016/j.jseaes.2011.08.016.
Baud, A., Richoz, S., Brandner, R., Krystyn, L., Heindel, K., Mohtat, T., Mohtat-Aghai, P., Horacek, M. (2021) Sponge takeover from End-Permian Mass Extinction to early Induan Time: Records in Central Iran Microbial Buildups. Frontiers in Earth Science, 9: 1-23. doi.org/10.3389/feart.2021.586210.
Bruhwiler, T., Goudemand, N., Galfetti, T., Bucher, H., Baud, A., Ware, D., Hermann, E., Hochuli, P. A., Martini, R (2009) The Lower Triassic sedimentary and carbon isotope records from Tulong (South Tibet) and their significance for Tethyan palaeoceanography. Sedimentary Geology, 222 (3): 314-332. doi.org/10.1016/j.sedgeo.2009.10.003.
BadriKolalo, N., Hamidi, B., Vaziri, S. H., Aghanabati, S. A (2015) Biostratigraphic Correlation of Elikah Formation in Zal Section (Northwestern Iran) with Ruteh and Type Sections in Alborz Mountains Based on Conodonts. Iranian Journal of Earth Sciences, 7: 78-88.
Besse, J., Torcq, F., Gallet, Y., Ricou, L. E., Krystyn, L., Saidi, A (1998) Late Permian to Late Triassic paleomagnetic data from lran: constraints on the migration of the Iranian block through the Tethyan Ocean and initial destruction of Pangea. Geophysical Journal International, 135: 77-92. doi.org/10.1046/j.1365-246X.1998.00603.x.
Brunet, M. F., Wilmsen, M., Granath, J. W (2009) South Caspian to Central Iran Basins. Geological Society of London, Special Publications, 312: 1-6. doi.org/10.1144/SP312
Calvet, E., Tucker, M. E (1988) Outer ramp carbonate cycles in the Upper Muschelkalk, Catalan Basin, NE Spain. Sedimentary Geology, 57: 185-198. doi.org/10.1016/0037-0738(88)90026-7.
Colombie, C., Badenas, B., Aurell, M., Gotz, A. E., Bertholon, S., Boussaha, M (2014) Feature and duration of meter-scale sequences in a storm-dominated carbonate ramp setting (Kimmeridgian, northeastern Spain). Sedimentary Geology, 312: 94-108. doi.org/10.1016/j.sedgeo.2014.08.002.
Erwin, D. H., Bowring, S. A., Jin, Y. G (2002) The end-Permian mass extinctions. In: Koeberl, C., MacLeod, K. G. (Eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America Special Paper, 356: 363-383. 10.1130/0-8137-2356-6.363.
Flügel, E (2010) Microfacies of Carbonate Rocks: Analysis, Interpretation and Application: Berlin. Springer-Verlag, Heidelberg, New York, 984p.
Foster, W. J., Lehrmann, D. J., Yu, M., Ji, L., Martindale, R. C (2018) Persistent environmental stress delayed the recovery of marine communities in the aftermath of the Latest Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 33 (4): 338-353. 10.1002/2018pa003328.
Friedman, G. M (1965) Terminology of Crystallization Textures and Fabrics in Sedimentary Rocks. Journal of Sedimentary Research, 35: 643-655.
Friesenbichler, E., Richoz, S., Baud, A., Krystyn, L., Sahakyan, L., Vardanyan, S., Peckmann, J., Reitner, J., Heindel, K (2018) Sponge-microbial build-ups from the lowermost Triassic Chanakhchi section in southern Armenia: Microfacies and stable carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 490: 653-672. doi.org/10.1016/j.palaeo.2017.11.056.
Ghaderi, A., Garbelli, C., Angiolini, L., Ashouri, A. R., Korn, D., Rettori, R., Gharaie, M. H. M (2014) Faunal change near the end-Permian extinction: the brachiopods of the Ali Bashi Mountains, NW Iran. Rivista Italiana di Paleontologia e Stratigrafia, 120: 27-59. 10.13130/2039-4942/6048.
Ghaderi Barmi, S (1393) Facies and sedimentary environment of Elika Formation in west of Damghan (Shamshirzanan Mountain), M.Sc. thesis, Islamic Azad University, Shahrood branch (in Persian).
Glaus, M (1964) Trias und oberperm in Zentralen Elburs (Persien). Eclogae Geologicae Helvetiae, 57: 497-508.
Gliwa, J., Ghaderi, A., Leda, L., Schobben, M., Tomás, S., Foster, W. J., Forel, M.-B., Ghanizadeh Tabrizi, N., Grasby, S. E., Struck, U., Ashouri, A. R., Korn, D (2020) Aras Valley (Northwest Iran): high-resolution stratigraphy of a continuous central Tethyan Permian/Triassic boundary section. Fossil Record, 23: 33-69. doi.org/10.5194/fr-23-33-2020.
Golshani, F., Partoazar, H., Seyed-Emami, K (1986) Permian-Triassic Boundary in lran. Memorie della societa geologica italiana, 34: 257-262.
Gregg, J. M (988) Origins of dolomite in the offshore facies of the Bonneterre Formation (Cambrian), southeast Missouri, in: Shukla, V., Baker, P. A. (Eds.), Sedimentology and Geochemistry of Dolostones: Society Economic Paleontologists and Mineralogists Special publication, 43: 67-83. doi.org/10.2110/pec.88.43.0067.
Gregg, J. M., Shelton, K. L (1990) Dolomitization and Dolomite Neomorphism in the Back Reef Facies of the Bonneterre and Davis Formations (Cambrian), Southeastern Missouri. Journal of Sedimentary Research, 60: 549-562.
Gregg, J. M., Sibley, D. F (1984) Epigenetic Dolomitization and the Origin of Xenotopic Dolomite Texture. Journal of Sedimentary Research, 54: 908-931.
Hassanzadeh, J., Wernicke, B. P (2016) The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions. Tectonics 35: 586-621. doi.org/10.1002/2015TC003926.
Heindel, K., Foster, W. J., Richoz, S., Birgel, D., Roden, V. J., Baud, A., Brandner, R., Krystyn, L., Mohtat, T., Koşun, E., Twitchett, R. J., Reitner, J., Peckmann, J (2018) The formation of microbial-metazoan bioherms and biostromes following the latest Permian mass extinction. Gondwana Research, 61: 187-202. doi.org/10.1002/2015TC003926.
Heydari, E., Hassanzadeh, J., Wade, W. J., Ghazi, A. M (2003) Permian-Triassic boundary interval in the Abadeh section of Iran with implications for mass extinction: part 1- Sedimentology. Palaeogeography, Palaeoclimatology, Palaeoecology, 193: 405-423. doi.org/10.1016/S0031-0182(03)00258-X.
Jahani, D (1397) Sedimentology and sedimentary environment of intra-basin conglomerates with flat clasts of the lower part of the Elika Formation (Lower Triassic) in Alborz Mountains, Scientific Quarterly Journal of Geosciences, 110: 47-54 (in Persian). doi.org/10.22071/gsj.2018.109715.1340.
Kershaw, S., Zhang, T., Lan, G. (1999) A microbialite carbonate crust at the Permian–Triassic boundary in South China, and its palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 146 (1-4): 1-18. doi.org/10.1016/S0031-0182(98)00139-4.
Kershaw, S., Crasquin, S., Li, Y., Collin, P. Y., Forel, M. B., Mu, X., Baud, A., Wang, Y., Xie, S., Maurer, F., Guo, L (2011) Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis. Geobiology, 10: 25-47. doi.org/10.1111/j.1472-4669.2011.00302.x.
Korn, D., Ghaderi, A., Leda, L., Schobben, M., Ashouri, A. R (2016) The ammonoids from the late Permian Paratirolites Limestone of Julfa (East Azerbaijan, Iran). Journal of Systematic Palaeontology, 14: 841-890. doi.org/10.1080/14772019.2015.1119211.
Korn, D., Hairapetian, V., Ghaderi, A., Leda, L., Schobben, M., Akbari, A (2021a) The Changhsingian (late Permian) ammonoids from Baghuk Mountain (Central Iran). European Journal of Taxonomy, 776: 1-106. doi.org/10.5852/ejt.2021.776.1559.
Korn, D., Leda, L., Heuer, F., Moradi Salimi, H., Farshid, E., Akbari, A., Schobben, M., Ghaderi, A., Struck, U., Gliwa, J., Ware, D., Hairapetian, V (2021b) Baghuk Mountain (Central Iran): high-resolution stratigraphy of a continuous Central Tethyan Permian–Triassic boundary section. Fossil Record, 24 (1): 171-192. doi.org/10.5194/fr-24-171-2021, 2021.
Korte, C., Kozur, H. W., Joachimski, M. M., Strauss, H., Veizer, J., Schwark, L (2004) Carbone, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran. International Journal of Earth Sciences, 9: 565-581. doi.org/10.1007/s00531-004-0406-7.
Kozur, H. W (2007) Biostratigraphy and event stratigraphy in Iran around the Permian–Triassic Boundary (PTB): implications for the causes of the PTB biotic crisis. Global Planetary Change, 55 (1-3): 155-176. doi.org/10.1016/j.gloplacha.2006.06.011.
Leda, L., Korn, D., Ghaderi, A., Hairapetian, V., Struck, U., Reimold, W. U (2014) Lithostratigraphy and carbonate microfacies across the Permian-Triassic boundary near Julfa (NW Iran) and in the Baghuk Mountains (Central Iran). Facies, 60 (1): 295-325. doi.org/10.1007/s10347-013-0366-0.
Liu, X. C., Wang, W., Shen, S. Z., Gorgij, M. N., Ye, F. C., Zhang, Y. C., Furuyama, S., Kano, A., and Chen, X. Z (2013) Late Guadalupian to Lopingian (Permian) carbon and strontium isotopic chemostratigraphy in the Abadeh section, central Iran: Gondwana Research, 24(1): 222-232. doi.org/10.1016/j.gr.2012.10.012.
Luo, C., Reitner, J (2014) First report of fossil “keratose” demosponges in Phanerozoic carbonates: preservation and 3-D reconstruction, Naturwissenschaften, 101: 467-477. doi.org/10.1007/s00114-014-1176-0.
Mahari, R (2012) Sequence Stratigraphy Based on Facies and Sedimentary Environments of Triassic Elika Formation in North of Tabriz, Iran. Life Science Journal, 9(2): 64-70.
Mazzullo, S. J (1992) Geochemical and Neomorphic Alteration of Dolomite: A Review. Carbonates and Evaporites, 7: 21-37. doi.org/10.1007/BF03175390.
Metcalfe, I (2006) Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: the Korean Peninsula in context. Gondwana Research, 9: 24-46. doi.org/10.1016/j.gr.2005.04.002.
Metcalfe, I (2013) Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences. 66: 1-33. doi.org/10.1016/j.jseaes.2012.12.020.
Mohtat-Aghai, P., Vachard, D., Krainer, K (2009) Transported foraminifera in Palaeozoic deep red nodular limestones exemplified by latest Permian Neoendothyra in the Zal section (Julfa area, NW Iran). Revista española de micropaleontogía, 41: 197-213.
Muttoni, G., Gaetani, M., Kent, D. V., Sciunnach, D., Angiolini, L., Berra, F., Garzanti, E., Mattei, M., Zanchi, A (2009a) Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian. Geoarabia, 14: 17-48. doi.org/10.2113/geoarabia140417.
Muttoni, G., Mattei, M., Balini, M., Zanchi, A., Gaetani, M., Berra, F (2009b) The drift history of Iran from the Ordovician to the Triassic. Geological Society of London, Special Publication, 312: 7-29. doi.org/10.1144/SP312.
Natal’in, B. A., Șengör, A. M. C (2005) Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: the pre-history of the Palaeo-Tethyan closure. Tectonophysics, 404: 175-202. doi.org/10.1016/j.tecto.2005.04.011.
Pashaei, H., Hamdi, B., Aganbati, S. A (1391) Biostratigraphy of Triassic deposits in Ruteh section in Alborz Mountains (north of Tehran), Scientific Quarterly Journal of Geosciences, 86: 11-18 (in Persian).
Payne, J. L., Lehrmann, D. J., Wei, J., Orchard, M. J., Schrag, D. P., Knoll, A. H (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science, 305: 506-509. 10.1126/science.1097023.
Payne, J. L., Lehrmann, D. J., Wei, J., Knoll, A. H (2006) The pattern and timing of biotic recovery from the end-Permian extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios 21:63-85. doi.org/10.2110/palo.2005.p05-12p.
Pourheydar, S. Z., Adabi, M. H., Mousavi Tasouj, M. R., Sadeghi, A (1399) Diagenesis processes and geochemical characteristics of Elika Formation deposits in the large Gadhamgah anticline in the south of Central Alborz. Kharazmi Journal of Earth Sciences, 6(1): 55-82 (in Persian).
Pourheydar, S. Z., Adabi, M. H., Mousavi Tasouj, M. R., Sadeghi, A (1400) The sedimentary environment of the Lower-Middle Triassic carbonate platform in the large Gadhamgah anticline in the south of central Alborz. Scientific Quarterly Journal of Geosciences, 31(2): 148-137 (in Persian). doi.org/10.22071/gsj.2020.194184.1679.
Pruss, S. B., Corsetti, F. A., Bottjer, D. J (2005) The unusual sedimentary rock record of the Early Triassic: a case study from the southwestern United States. Palaeogeography, Palaeoclimatolology, Palaeoecology, 222 (1-2): 33-52. doi.org/10.1016/j.palaeo.2005.03.007.
Retallack, G. J (1995) Permian–Triassic life crisis on land. Science, 267: 77-80. 10.1126/science.267.5194.77.
Richoz, S (2006) Stratigraphie et variations isotopiques du carbone dans le Permien superieur et le Trias inferieur de quelques localites de la Neotethys (Turquie, Oman et Iran). (Institut de Geologie et Paleontologie).
Richoz, S., Krystyn, L., Baud, A., Brandner, R., Horacek, M., Mohtat-Aghai, P (2010) Permian-Triassic boundary interval in the Middle East (Iran and N. Oman): progressive environmental change from detailed carbonate carbon isotope marine curve and sedimentary evolution. Journal of Asian Earth Sciences, 39 (4): 236-253. doi.org/10.1016/j.jseaes.2009.12.014.
Ruttner, A (1993) Southern borderland of Triassic laurasia in north-east lran. Geologische Rundschau, 82: 110-120. 10.1007/BF00563274.
Saidi, A., Brunet, M. F., Ricou, L. E (1997) Continental accretion of the Iran Block to Eurasia as seen from late Paleozoic to early cretaceous subsidence curves. Geodinamica Acta, 10: 189-208.
Samii Rad, M (1393) Facies and sedimentary environment of Elika Formation (Early Triassic) in the northeast of Damghan (Darbanmeh region), M.Sc. thesis, Islamic Azad University, Shahrood branch (in Persian).
Sano, H., Onoue, T., Orchard, M. J., Martini, R (2011) Early Triassic peritidal carbonate sedimentation on a Panthalassan seamount: the Jesmond succession, Cache Creek Terrane, British Columbia, Canada. Facies, 58 (1): 113-130. 10.1007/s10347-011-0270-4.
Sedlacek, A. R., Saltzman, M. R., Algeo, T. J., Horacek, M., Brandner, R., Foland, K., Rhawn, F., Denniston, R. F (2014) 87Sr/86Sr stratigraphy from the early triassic of Zal, Iran: linking temperature to weathering rates and the tempo of ecosystem recovery. Geology, 429: 779-782. doi.org/10.1130/G35545.1.
Sengör, A. M. C (1990) A new model for the late Palaeozoic-Mesozoic tectonic evolution of Iran and implications for Oman. In: the Geology and Tectonics of the Oman Region, Robertson, A. H. F., Searle, M. P., Ries, A. C. (Eds). Geological Society of London, Special Publication, 49: 797-831. 10.1144/GSL.SP.1992.049.01.49.
Sepkoski, J. J (1982) Mass extinctions in the Phanerozoic oceans: a review. In: Geological implications of impacts of large asteroids and comets on the earth, Silver L. T., Schultz, P.H. (Eds.). Geological Society of America, special Papers, 190: 283-289. doi.org/10.1130/SPE190-p283.
Seyed-Emami, K (2003) Triassic in Iran. Facies, 48 (1): 91-106. doi.org/10.1007/BF02667532.
Sotohian, F (1387) Sequence stratigraphy of the Elika Formation in Talash section, Eastern Alborz. Journal of Science, University of Tehran, Tehran University Science Journal, 34(1): 69-61 (in Persian).
Sotohian, F (1393) Microfacies, sedimentary environment and sequence stratigraphy of Lower and Middle Triassic deposits in the Calariz section (southwest of Shahrood), Applied Sedimentology, 4: 37-49 (in Persian).
Haijun Song, H., Wignall, P. B., Dunhill, A. M (2018) Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction. Science Advances, 4: 1-6.
Stampfli, G. M., Borel, G. D (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196: 17-33. doi.org/10.1016/S0012-821X(01)00588-X.
Stampfli, G. M., Borel, G. D (2004) The TRANSMED transects in space and time: Constraints on the paleotectonic evolution of the Mediterranean domain. In: Cavazza, W., Roure, F., Spakman, W., Stampfli, G. M., Ziegler, P (Eds.), The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle. Springer Verlag, 53-80.
Sun, Y. D., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L., Lai, X (2012) Lethally hot temperatures during the Early Triassic greenhouse. Science, 338: 366-370. 10.1126/science.1224126.
Tahmasabi, A (1376) Investigation of microfacies, sedimentary environment and sequence stratigraphy of the lower and middle parts of the Elika Formation in the east of Central Alborz, M.Sc. thesis, Tarbiat Moalem University, Tehran (in Persian).
Taraz, H., Golshani, F., Nakazawa, K., Shimizu, D., Bando, Y., Ishii, K. I., Maurata, M., Okimura, Y., Sakagami, S., Nakamura, K., Tukuoka, T (1981) The Permian and the lower Triassic systems in Abadeh region, Central Iran: Memoirs of the Faculty of Science, Kyoto University. In: Series of Geology and Mineralogy, 47: 62-133.
Tucker, M. E., Wright, V. P (1990) Carbonate Sedimentology. Blackwell, Oxford, 482p.
Vaziri, S (1384) Lithodtratigraphy of the Elika Formation in the northeast of Jajarm (Eastern Alborz, Binalud transitional zone), Journal of Basic Sciences (Islamic Azad University), 15(57): 271-285 (in Persian).
Wan, B., Chu, Y., Chen, L., Liang, X., Zhang, Z., Ao, S., Talebian, M (2021) Paleo-Tethys subduction induced slab-drag opening the Neo-Tethys: Evidence from an Iranian segment of Gondwana. Earth-Science Reviews, 221: 103788.
Wei, H., Shen, J., Schoepfer, S. D., Krystyn, L., Richoz, S., Algeo, T. J (2015) Environmental controls on marine ecosystem recovery following mass extinctions, with an example from the Early Triassic. Earth-Science Reviews, 149: 108-135. doi.org/10.1016/j.earscirev.2014.10.007.
Wignall, P. B., Twitchett, R. J (1999) Unusual intraclastic limestones in Lower Triassic carbonates and their bearing on the aftermath of the end-Permian mass extinction. Sedimentology, 46 (2): 303-316. doi.org/10.1046/j.1365-3091.1999.00214.x.
Xu, H. P., Zhang, Y. C., Yuan, D. X., Shen, S. Z (2022) Quantitative palaeobiogeography of the Kungurian–Roadian brachiopod faunas in the Tethys: Implications of allometric drifting of Cimmerian blocks and opening of the Meso-Tethys Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 601: 111078. 10.1016/j.palaeo.2022.111078.
Yaqoubi, M., Najafzadeh, A., Zahdi, A., Mahari, R., Khaleghi, F (1401) Petrography and geochemistry of Elika Formation dolomites in the Zal section, Julfa, Northwestern Iran. Applied Sedimentology, 10(19): 53-35 (in Persian). 10.22084/PSJ.2022.25490.1326.
Zanchi, A., Zanchetta, S., Garzanti, E., Balini, M., Berra, F., Mattei, M., Muttoni, G (2009) The Cimmerian evolution of the Nakhlak-Anarak area, Central Iran, and its bearing for the reconstruction of the history of the Eurasian margin. Geological Society of London, Special Publication, 312: 261-286. doi.org/10.1144/SP312.1.
Zhang, Y. C., Zhai, Q. G., Fan, J. J., Song, P. P., Qie, W. K (2022) Editorial preface to special issue: From Prototethys to Neotethys: Deep time paleobiogeographic and paleogeographic evolution of blocks in the Qinghai-Tibet Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 599: 111046. 10.1016/j.palaeo.2022.111046.