محیط رسوبی، دیاژنز و ژئوشیمی توالی کربناته کرتاسه بالایی در برش پاتینگ، شهرستان اسدیه، شرق ایران

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد، گروه زمین‌شناسی، دانشکده علوم، دانشگاه بیرجند، بیرجند، ایران

2 دانشیار گروه زمین‌شناسی، دانشکده علوم، دانشگاه بیرجند، بیرجند، ایران

چکیده

برش مورد مطالعه در 113 کیلومتری شرق بیرجند (23 کیلومتری شهرستان اسدیه) و شرق روستای پاتینگ قرار گرفته است. توالی مورد مطالعه به سن کرتاسه پسین به ضخامت 246 متر که عمدتاً متشکل از سنگ‌آهک‌های لایه متوسط تا ضخیم می‌باشد. مرز زیرین این نهشته‌ها با کنگلومرای قاعده‌ای قرمزرنگ و مرز بالایی توسط ماسه‌سنگ قرمز محدود شده است. در این پژوهش بر اساس مطالعات صحرایی و آزمایشگاهی، اجزای تشکیل‌دهنده سنگ‌های کربناتی شامل انواع اجزای اسکلتی و غیراسکلتی می‌باشد و 7 ریزرخساره‌ی کربناته شناسایی شده است که در 3 کمربند رخساره‌ای پهنه جزرومدی، لاگون نیمه­محصور و پشته کربناته نهشته شده‌اند. طبق شواهد به‌دست‌ آمده از ریزرخساره‌ها و تعیین الگوی رسوب‌گذاری آن‌ها، محیط رسوبی تعیین ‌شده برای برش پاتینگ، پلاتفرم کربناته از نوع رمپ تک‌شیب می‌باشد که کلیه ریزرخساره‌ها عمدتاً در بخش داخلی رمپ نهشته شده‌اند. داده‌های حاصل از آنالیز ژئوشیمیایی عناصر اصلی و فرعی نمونه‌های کربناته نشان‌دهنده ترکیب کانی‌شناسی اولیه‌ی کلسیتی نمونه‌ها و حاکمیت سیستم دیاژنتیکی بسته برای برش مورد مطالعه و همچنین با توجه به آنالیزهای ژئوشیمیایی و نقشه پالئوژئوگرافی کرتاسه پسین جهان می‌توان نتیجه گرفت که شرایط اقلیمی معتدله در محیط تشکیل این رسوبات حاکم بوده است. سنگ‌های آهکی مورد بررسی به‌طور گسترده تحت تأثیر فرایندهای دیاژنتیکی مختلف قرار گرفته‌اند که مهم‌ترین آن‌ها شامل میکرایتی شدن، سیمانی شدن، فشردگی مکانیکی و شیمیایی، تشکیل انواع تخلخل‌ها، انحلال، نئومورفیسم، شکستگی و پرشدگی رگه‌ها می‌باشد که در محیط‌های مختلف دیاژنتیکی دریایی، متئوریک، دفن کم‌عمق و بالاآمدگی ایجاد شده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Sedimentary environment and diagenesis geochemistry of Late Cretaceous carbonate sequence of Pating section, Asadiyeh city, east of Iran

نویسندگان [English]

  • A. Miran 1
  • Gh. R. Mirab Shabestari 2
  • A. R. Khazaei 2
1
2 Assoc. Prof., Dept., of Geology, Faculty of Sciences, University of Birjand, Birjand, Iran
چکیده [English]

The studied section is located in the 113Km east of Birjand (25Km Asadiyeh City) and east of Pating Village. The mentioned sequence, aged Late Cretaceous, is totally 246m in thickness and mostly consists of thick and medium bedded limestones along rock units. The lower boundary has been limited by basal red conglomerate and the upper boundary has been covered by red-colored sandstone unit. In This research, based on both field and laboratory studies, the main components of carbonate rocks include both skeletal and non-skeletal grains and totally 7 carbonate microfacies have been determined which have been deposited within 3 facies belts including tidal flat, Semi-restricted lagoon and shoal. According to the obtained evidences from the microfacies analysis, the suggested depositional model for the Pating section is a homoclinal ramps type carbonate platform. All of the microfacies are mainly deposited in the inner part of the ramp slope. The obtained geochemical data from carbonate samples analysis indicate a calcitic original mineralogy and dominance of a closed diagenetic system for the studied sequence. Also, according to the geochemical data, a temperate climatic condition could be considered for the formation environment of this sequence which is confirmed by the Late Cretaceous Palaeogeographic global map. The studied limestone samples have been widely affected by different diagenetic processes that the most important of which are micritization, cementation, mechanical and chemical compaction, formation of various types of porosity, dissolution, neomorphism, replacement, fracturing and vein-filling cements that have been formed in a variety of marine, meteoric, shallow burial and uplift diagenetic environments.

کلیدواژه‌ها [English]

  • Sedimentary environment
  • Geochemistry
  • Stratigraphy
  • Microfacies
  • Paragenetic sequence
Adabi, M. H (2010) Sedimentary Geochemistry, Arian Zemin Publications, 503 p. (in persian).
Adabi, M. H., Asadi-Mehmandosti, E (2008) Microfacies and Geology of the land Formation in the Tang-e-Rashid area, Izeh, SW Iran. Journal of Asian Earth Sciences, 33: 267-277.
Adabi, M. H., Rao, C. P (1991) Petrographic and geochemical evidence for original aragonitic mineralogy of Upper Jurassic carbonates (Mozduran Formation), Sarakhs area, Iran. Sedimentary Geology, 72: 253-267. (in persian).
Aghanabati, A (2010) Geology of Iran. Organization of Geology and Mineral Exploration of the country, 586 p. (in persian).
Ahr, W. M (2008) Geology of carbonate reservoirs: the identification, description and characterization of hydrocarbon reservoirs in carbonate rocks. John Wiley & Sons, p, 296. (in persian). doi.org/10.1002/9780470370650.
Alavi-Naeini, M (1981) Geological quadrangle 1: 100000 scaled map of Ahangaran, Geological Survey of Iran.
Aliabadi, M (2012) Petrography and diagenesis of sediments in the upper part of Sarvak formation in Bangistan anticline, southwestern Iran. M.Sc. Thesis, University of Birjand, 140 p. (in persian).
Baccelle, L., Bosellini, A (1965) Diagrammi per la stima visiva della composizione percentuale nelle rocche sedimentary, Annali dell universita di Ferrara (Nuova Serie), sezione9. Science geologichea paleontologiche, 1: 59. 62.
Bachmann, M., Hirsch, F (2006) Lower Cretaceous carbonate platform of the eastern Levant (Galilee and the Golan Heights): Stratigraphy and second order sea level change. Cretaceous Research, 27: 487-512. doi.org/10.1016/j.cretres.2005.09.003.
Bakhshi, A., Adabi, M. H., Sadeghi, A., Kavoosi, M. A (2022) Microfacies, depositional environments and diagenetic processes of the Ilam formation in both sides Balarud and Zagros mountain front faults (South of Lurestan area and north of north Dezful).
 Brand, U., and Morrison, J. O (1987) Biogeochemistry of fossil marine invertebrates. Geoscience of Canada, 14: 85-107.
Brand, U., Veizer, J (1980) Chemical diagenesis of a multicomponent carbonate system-I, Trace elements. Journal of Sedimentary Petrology, 50: 1219-1236. doi.org/10.1306/212F7BB7-2B24-11D7-8648000102C1865D.
Budd, D. A (1992) Dissolution of high-Mg calcite fossils and the formation of biomolds during mineralogical stabilization: Carbonates and Evaporites, 7: 74-81. doi.org/10.1007/bf03175394.
Choquette, P. W., Pray, L. C (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. American Association of Petroleum Geologists Bulletin, 54: 207-250.
Dunham, R. J (1962) Classification of carbonate rocks according to depositional texture. American Association of Petroleum Geologists Memoir, 1: 108-121.
Einsele, G (2000) Sedimentary Basin, Evolution, Facies and Sediment Budget. 2nd ed., Springer-Verlag, 292 p.
El-hefnawi, M. A., Mashaly, A. O., Shalaby, B. N., Rashwan, M. A (2010) Petrography and geochemistry of Eocene limestone from Khashm Al-Raqaba area, El-Galala El-Qibliya, Egypt. Carbonates and Evaporites, 25: 193-202. doi.org/10.1007/s13146-010-0023-4.
Emamipour, F(2014) Petrography, sedimentary environment and geochemistry of the Early Cretaceous sequence in North Khazari, South Khorasan. M. Sc. Thesis, University of Birjand, 145 p. (in persian).
Embery, A. F., Klovan, J. E (1975) A Late Devonian reef tract on Northeastern Banks Island, N. W. T. Bulletin of Canadian Petroleum Geology, 19(4): 730-781. doi.org/10.35767/gscpgbull.19.4.730.
Flügel, E (2010) Microfacies analysis of carbonate rocks: analysis, interpretation and application. Springer-Verlag, Berlin, 976 p.
Folk, R (1980) Petrology of sedimentary rocks. Hemphill, Texas, 181 p.
Friedman, G. M (1965) Terminology of crystallization texture and fabrics in sedimentary rocks. Journal of Sedimentary Petrology, 35: 643-655.
Goldhammer, R. K (1997) Compaction and decompaction algorithms for sedimentary carbonates. Journal Sedimentary Research, Section A, 67: 26-35.
Grabou, A. W (1904) On the Classification of Sedimentary rock. American Geologist, 33: 228-242.
Kakemem, U., Adabi, M, H., Dehyadegari, E (2022) Sedimentary environment, sequence stratigraphy and reservoir characterization of the Kangan Formation in South of Pars Gas Field, Iran: 75-86. (in persian).
Khani, A (2016) Petrography, sedimentary environment and geochemistry of carbonate sequence of Haftoman Formation (Late Cretaceous) in Rashid Koh, northwestern Khor and Biabank, Central Iran. M.Sc. Thesis, University of Birjand, 130 p. (in persian).
Khazaei, A. R., Mirab Shabestari, G. R., Saeipour Karamjavan, L (2014) Late Cretaceous rudist limestones synchronic with igneous rocks in east of Iran, biostratigraphical and paleoecological significant. Proceedings of 10th International Congress on Rudist Bivalves, Barcelona, Spain, p. 38.
Khezerloo, R., Moallemi, S. A., Movahed, B (2021) Microfacies, Depositional Environment, Diagenetic Processes and Their Effects on Reservoir Characterization of the KhanehZu Formation in the East of Kopet Dagh Basin, 116: 4-5. doi.org/ 10.22078/pr.2020.4227.2913.
Land, L. S., Hoops, G. H (1973) Sodium in carbonate sediments and rock: a possible index to the salinity of diagenetic solutions. Journal of Sedimentary Petrology, 43: 614-617.
Mazzullo, S. J (1992) Geochemical & neomorphic alteration of dolomite-a review: Carbonates and Evaporites, 7: 21-37. doi.org/10.1007/BF03175390.
Milliman, J. D (1974) Marine Carbonates: Springer-Verlag, Berlin, 357p.
Mirab Shabestri, G. R., Adabi, M. H (2000) Determining the Precambrian-Cambrian boundary in the Soltanieh formation sequence located in the north of Semnan by chemical stratigraphic method, Journal of the Faculty of Earth Sciences, Shahid Beheshti University, No. 4 and 5, 85-92. (in persian).
Mirzaee Mahmoodabadi, R (2022) Assessment of evolution of the sedimentary environment of Paleocene-Eocene succession in Shiraz area based on sequence stratigraphic evidences: 182-207. (in persian).
Moradi, M., Moussavi-Harami, R., Mahboubi, A., Khanehbad, M., Ghabishavi, A (2019) Diagenesis and its effect on the reservoir quality of the Asmari formation, Aghajari oil field, SW Iran, No. 112. doi.org/10.22071/gsj.2018.125401.1434
Morse, J. W., and Mackenzie, R. T (1990) Geochemistry of Sedimentary Carbonates: Elsevier, Amsterdam, 696 p.
Pingitore, C. P (1990) The behavior of Zn2+ and Mn2+ during carbonate diagenesis. Journal of Sedimentary Petrology, 48: 799-814.
Rahimpour Bonab, H (2009) Carbonate lithology with an attitude on reservoir quality, Tehran University Press, 554 p. (in persian).
Rao, C. P (1991) Geochemical differences between subtropical (Ordovician), cool temperate (recent and Pleistocene) and subpolar carbonates, Tasmania, Australia. Carbonates and Evaporites, 6: 83-106.
Rao, C. P., Adabi, M. H (1992) Carbonate minerals major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool temperate carbonates, Western Tasmania, Australia. Marine Geology, 103: 249-272.
Rao, C. P., Amini, Z. Z (1995) Faunal relationship to grain-size, mineralogy and geochemistry in recent temperate shelf carbonate, Western Tasmania, Australia. Carbonates and Evaporites, 10: 114-123.
Saipour Karamjovan, L (2012) Biostratigraphy and paleoenvironment of Upper Cretaceous limestones associated with igneous rocks of Darha-lano area (east of Birjand). M.Sc. Thesis, University of Birjand, 132 p. (in persian).
Salehi, M. A., Adabi, M. H., Ghobishavi, A., Ghalavand, H (2007) Reconstruction of sedimentary environment and petrographic and geochemical evidence of aragonite original mineralogy of Lower Cretaceous carbonate rocks (Fahliyan Formation) in the Zagros sedimentary basin, Iran. 13th Bathurst meeting, Norwich, U. K. (Abstract).
Sandullia, R., Raspinib, A (2004) Regional to global Correlation of lower Cretaceous (Hauterivian-Barremian) shallow water carbonate of the southern Apennines (Italy) and Dinarides (Montenegro), southern Tethyan margin. Sedimentary Geology, 165: 117-153. doi.org/10.1016/j.sedgeo.2003.11.014.
Schlanger, S. O (1988) Strontium storage and release during deposition and diagenesis of marine Carbonates related to sea level variations in: Physical and Chemical Weathering in Geochemical Cycle. In: Lerman, A. & Maybeck, M. (Eds.), 323-339.
Schmoker, J. W., Halley, R. B (1982) Carbonate porosity versus depth: a predictable relation for South Florida. American Association of Petroleum Geologists Bulletin, 66: 2561-2570.
Sheikholeslami, Z., Majidifard, M., Aleali S. M., Javanbakht, M., Taherpour Khalilabad, M (2022) Facies changes and sedimentary environment in a pre-arc basin (Nazarkardeh Formation, Kopeh Dagh sedimentary basin, northeastern Iran), 379-394. (in persian).
Sibley, D. F., Gregg, J. M (1987) Classification of dolomite rock texture. Journal of Sedimentary Petrology, 57: 967-975.
Stocklin, J., Eftekhar-Nezhad, J., Hushmand-Zadeh, A (1972) Central Lut Reconnaissance; East Iran: Geological Survey of Iran, Report 21, 62. p. (in persian).
Stoll, H. M., Scharg, D. P (1998) Effects of Quaternary Sea Level Cycle a strontium in Seawater. Geochim. Cosmochim, 62: 1107-1118.  doi.org/10.1016/S0016-7037 (98)00042-8.
Tucker, M. E (2003) Sedimentary Petrology. 3rd edition, Blackwell, Oxford. 260p.
Umhoefer, P., Blakey, R (2016) Comparing a Plate – Tectonic scale model of SW Laurentia during Pennsylvanian to Permian time to Independently made Paleogeographic Maps of Landscapes, Basins, And Uplifts. GSA Annual Meeting in Denver, Colorado, USA.
Veizer, J., Demovic, R (1973) Environmental and climatic controlled fraction of elements in the Mesozoic carbonate sequence of the western Carpathians. Journal of Sedimentary Petrology, 43: 258-271.
Warren, J., K (2000) Dolomite, occurrence, evolution and economical important association. Earth Science Review, 52: 1-18.
       doi.org/10.1016/S0012-8252 (00)00022-2.
Wilson, J. L (1975) Carbonate facies in geologic history: Springer-Verlag. New York, 471p.
Zohdi, A., Mousavi-Harami, R., Moallemi, S. A., Mahboubi, A., Immenhauser, A (2013) Evolution, paleoecology and sequence architecture of an Eocene carbonate ramp, Southeast Zagros Basin, Iran, GeoArabia, 18 (4): 49-80.  doi.org/10.2113/geoarabia180449.