محیط رسوبی و تاریخچه دیاژنز سازند فهلیان در تاقدیس لار، جنوب زون ایذه

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشکده زمین‌شناسی، دانشگاه تهران، تهران

چکیده

سازند فهلیان شامل توالی کربناته نسبتاً ضخیمی از گروه خامی به سن نئوکومین – بارمین می‌باشد. مطالعات صورت گرفته بر روی این سازند در تاقدیس لار واقع در زون ایذه، منجر به شناسایی 25 ریزرخساره در 4 کمربند رخساره‌ای شد. در سازند فهلیان بقایای موجودات چارچوب‌ساز نظیر مرجان‌های هرماتیپیک و جلبک‌ها از گسترش بسیار اندکی برخوردار بوده و رخساره‌های دانه­پشتیبان شول دارای گسترش بسیار زیاد و مطلوبی هستند. محیط رسوب­گذاری سازند فهلیان در تاقدیس لار رمپ کربناته هموکلینال تعیین گردید و با توجه به گسترش رخساره‌های دانه غالب، احتمال می‌رود سازند فهلیان در یک رمپ رو به باد نهشته شده است. به نظر می‌رسد سازند فهلیان در منطقه مورد بررسی به صورت مجموعه‌های ساحل – سدی (Barrier – Bank complexes) تشکیل شده است و با توجه به گسترش رخساره‌های گرینستون بایوکلستی، بایوکلست-پلوئید وکستون-پکستون، ماسه‌سنگ‌های آهکی و وجود استروماتوپوراید در سازند فهلیان، و ضخامت قابل­ملاحظه­ا‌ی رخساره شول احتمال می‌رود محیط رسوبی سازند فهلیان تحت تأثیر امواج قرار داشته است. از مهم­ترین فرایندهای دیاژنزی موثر در سازند فهلیان در تاقدیس لار می‌توان به انحلال، میکرایتی شدن، تراکم، دولومیتی شدن، دولومیت‌زدایی، سیلیسی شدن، پیریتی شدن، سیمانی شدن و شکستگی، در مراحل مختلف دیاژنز دریایی، متئوریک، دفنی و تلوژنز نام برد.

کلیدواژه‌ها


عنوان مقاله [English]

Depositional environment and diagenetic history of Fahliyan Formation in Lar anticline, south of Izeh Zone

نویسندگان [English]

  • H Noori
  • H Rahimpour Bonab
چکیده [English]

The Fahliyan Formation contains relatively thick carbonate sequence which belongs to the Khami Group with Neocomian-Barremian age. This study investigated this unit in Lar anticline in Izeh Zone, which led to the identification of 25 microfacies in 4 facies belts. In the Fahliyan Formation, the remains of the framework builders such as hermatypic corals and algaes are scarce, while grain-supported shoal facies show good deveolpment. Suggested depositional environment for this carbonates in the Lar anticline is a homoclinal carbonate ramp and dominantion of grain-supported facies indicates windward side of a ramp. Seemingly, barrier-bank complexes were developed in this area along the ramp shoreline which lead to dominance of bioclastic grainstone, bioclastic-peloidal wackestone-packstone facies, and calcareous sandstones. In addition,  presence of stromatoporoid along with thick shoal facies may indicate a wave-dominated ramp. The most significant and effective diagenetic processes in the studied unit in the Lar anticline include micritization, compaction, dolomitization, dedolomitization, silicification, pyritization, cementation, and fracturing that occured in different stages of marine, meteoric, burial and telogenetic diagenesis.

کلیدواژه‌ها [English]

  • Fahliyan Formation
  • Micritization
  • Burial Diagenesis
  • microfacies
  • Windward
  • Calcareous Sandstones

منابع

[1] رحیم­پور بناب، ح (1389) سنگ‌شناسی کربناته با نگرشی بر کیفیت مخزنی، انتشارات دانشگاه تهران، 554 ص.

[2] زارع، م (1382) بررسی محیط رسوبی و دیاژنتیکی سازند فهلیان در چاه‌های آغاجاری 140 و منصوری 6، پایان­نامه کارشناسی­ارشد، دانشگاه تهران، 127ص.

[3] سوری، ل.، رحیم پوربناب، ح.، کاوسی، م, ع (1385) نقش گسل ایذه در تعیین مدل رسوبی سازند فهلیان در جنوب خاوری ایذه و فروافتادگی دزفول شمالی، دهمین همایش انجمن زمین­شناسی ایران، دانشگاه تربیت مدرس.

[4] لاسمی، ی.، نورافکن، خ (1384) رخساره‌ها و محیط رسوبی سازند فهلیان در میدان نفتی دارخوین، جنوب باختر ایران، مجموعه مقالات نهمین همایش انجمن زمین‌شناسی ایران، دانشگاه تربیت معلم.

[5] محمدخانی، ح (1382) بررسی محیط رسوبی و چینه‌نگاری سکانسی سازند فهلیان در میدان‌های نفتی خویز و رگ سفید در بخش جنوبی دزفول، پایان‌نامه کارشناسی­ارشد، دانشگاه تربیت معلم، 68 ص.

[6] مطیعی، ه (1372)زمین­شناسی ایران، چینه­شناسی زاگرس، انتشارات سازمان زمین­شناسی کشور، 536 ص.

[7] Abyat, A., Baghbani, D., Afghah, M., Kohansal Ghadimvand, N., Feghi, A (2012) Microbiostratigraphy and Lithostratigraphy of Fahliyan and Gadvan Formations in Kuh-e-Surmeh (Zagros Basin, Southwest Iran) advances in environmental biology, 6(12): 3078 ­ 3086.

[8] Adabi, M.H., Salehi, M.A., Ghobeishavi, A (2010) Depositional environment, sequence stratigraphy and geochemistry of Lower Cretaceous carbonates (Fahliyan Foemation), south–west Iran: Journal of Asian Earth Sciences, v. 39, p. 148–160.

[9] Ahmad, A.H.M., Bhat, G.M.M., Azim Khan, H (2006) Depositional environments and diagenesis of the kuldhar and Keera Dome carbonates (Late Bathonian–Early Callovian) of Western India. Journal of Asian Earth Sciences, 27, 765–778.

[10] Alsharhan, A.S., Nairn, A.E.M (1988) A review of the Cretaceous Formations in the Arabian Peninsula and the Gulf: Part II. Mid-Cretaceous (Wasia Group) Stratigraphy and Paleogeography. Journal of Petroleum Geology, U.K., v.11, pp. 89-112.

[11] Amodio, S (2006) Foraminifera diversity changes and paleoenvirenmental analysis: the lower Cretaceous shallow–water carbonate of Sanlorenzello, companion Apennines, southern Italy, Facies, 52:53-67.

[12] Amouthor, J.E., Fridman, G.M (1992) Early to late diagenetic dolomitization of platform carbonate: Lower Ordovician, Ellenbuger Group, Permian Basin, West Texas, Journal of Sedimentary Petrology, v. 62, p. 131–143.

[13] Armella, C., Cabaleri, N. and Leanza, H (2007) Tidally dominanted, rimmed-shelf facies of the Picu Leufu Formation (Jurassic/Cretaceous boundary) in Southwest Gondowana, Neuquen Basin, Argentina, Cretaceous Resarch, 28, p. 961–979.

[14] Bachmann, M., Hairsch, F (2006) Lower Cretaceous carbonate platform of the Eastern Levant (Galilee and the Golan Heights): stratigraphy and second-order sea-level change: Cretaceous Research, no. 27, p. 487 512.

[15] Bathurst, R.G.C (1975) Carbonate Sediments and their Diagenesis, Development in sedimentology, v. 12, Elsevier, Amesterdam, 658p.

[16] Beavington-Penney, S.J., Nadin, P., Wright, V.P (2008) Clarke E.d., McQuilken J. & Bailey H.W., “Reservoir quality variation on an eocene carbonate ramp”, El Garia Formation, offshore Tunisia: Structural control of burial corrosion and dolomitisation, Sedimentary Geology., Vol. 209, PP. 42–57.

[17] Bordenave, M.L., Burwood, R (1995) The Albian Kazhdumi formation of the Dezful Embayment, Iran: One of the Most efficient Petroleum generation systems. Spriger Verlag pub, 342pp.

[18] Burchette, T.P., Wright, V.P (1992) Carbonate ramp depositional systems. Sedimentary Geology 79, p3–57.

[19] Butler, I.B., Rickard, D (2000) Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide: Geochimica et Cosmochimica Acta, v. 64, p. 2665-2672.

[20] Buxton, M.W.N., Pedley, H.M (1989) A standardized model for Tethyan Tertiary carbonates ramps: Geological Society. London, Special Publication, 149, 746-748.

[21] Choquette P.W., Pray L.C (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates, AAPG Bulletin., Vol. 54, PP. 207–250.

[22] Dorobeck, S.L., Read, J.F (1986) Sedimentology and basin evolution of the Siluro-Devonian Helderberg Group, central Appalachians. Journal of Sedimentary Petrology, 56: 601–613.

[23] Dunham, R.J (1962) Classification of carbonate rocks according to depositional texture. AAPG Memoir 1, p. 108–121.

[24] Dunham, R.J (1970) Keystone vugs in carbonate beach deposits [abs.]: American Association of Petroleum Geologists Bulletin, v.54, p.845.

[25] Eichenseer, H.T., Walgenzitz, F.R., Biondi, P.J (1999) Stratigraphy Control on Facies and Diagenesis of Dolomitized Oolitic Siliciclastic Ramp Sequence (Pinda Group, Albian Offshore, Angola) AAPG, Bulletin, v.83 no. 11, P. 1729–1758.

[26] Esteban, M., Taberner C (2003) Secondary porosity development during late burial in carbonate reservoirs as a result of mixing and/or cooling of brines, Journal of Geochemical Exploration., v. 78-79, PP. 355–359.

[27] Embry, A.F., Klovan, J.E (1971) A Late Devonian reef tract on northeastern Banks Island: Can. Journal of Petroleum Geology, v.19, 51p.

[28] Emery, D., Meyers, K.J (1996) Sequence Stratigraphy. Blackwell Science Ltd, Oxford, v 297 pp.

[29] Farzipour-Saein, A., Yassaghi, A., Sherkati, S., Koyi, H (2009) Basin evolution of the Lurestan region in the Zagros fold-and-thrust belt, Iran. Journal of Petroleum Geology 32 (1), 5–19.

[30] Flugel, E (2010) Microfacies of carbonate rocks. Analysis, interpretation and application: Springer, Berlin ­ Heidelberg, New York, 144p.

[31] Given, R.K., Wilkinson, B.H (1985) Kinetic control of morphology, composition and mineralogy of abiotic sedimentary carbonate. Journal of Sedimentary Petrology, v. 55, p. 109–119.

[32] Goldhaber M.B (2004) Sulfur-rich sediments”, In: Mackenzie F.T. (Ed.), Sediments, Diagenesis, and Sedimentary Rocks,Treatise on Geochemistry, Elsevier, Amsterdam, pp. 257–288.

[33] Hood S.D., Nelson C.S., Kamp P.J.J (2004) Burial dolomitisation in a non tropical carbonate petroleum reservoir: the Oligocene Tikorangi Formation, Taranaki Basin, New Zealand, Sedimentary Geology., v. 172, PP. 117–138.

[34] Jamalian, M., Adabi, M.H., Moussavi, M.R., Sadeghi, A., Baghbani, D., Ariyafar, B (2011) Facies characteristic and paleoenvironmental reconstruction of the Fahliyan Formation, Lower Cretaceous, in the Kuh-e Siah area, Zagros Basin, southern Iran, Facies, 57 (1). 101-122.

[35] James, G.A., Wynd, J.G (1965) Stratigraphic nomenclature of Iranian oil consortium agreement area. American Association of Petroleum Geologist, Bulletin 49, 2182–2245.

[36] Koop, W., Stoneley, R (1982) Subsidence History of the Middle East Zagros Basin, Permian to Recent: Philosophical Transactions, Royal Society of London, A305, p. 149–168.

[37] Kamali, M.R., Lemon, N.M., Apak, S.N (1995) Prosity generation and reservoir potential of Ouldburra Formation carbonate Officer Basin, South Australia, Association for Petroleum and Explosives Administration, p. 106 – 120.

[38] Laporte, L.F (1969) Recognition of a transgressive carbonate sequence within an epeiric sea: Helderberg Group (Lower Devonian) of New York State. In: G.M. Friedman (Editor), Depositional Environments in Carbonate Rocks. A Symposium: Society of Economic Paleontologists and Mineralogists special. p, 14: 98–119.

[39] Lawrenc, M.J.F (1994) Conceptual model for early diagenetic chert and dolomite, Amuri Limestone Group, Noeth easternsouth Island, New Zealand, Jour. Journal of Sedimentary Petrology. v. 41, p. 479–498.

[40] Lee, M.R., Harwood, G.M (1989) Dolomite calcitization and cemen zonation related to uplift of the Raisby Formation (Zechstein carbonate). Northeast England. Sedimentary Geology. 65, 285–305.

[41] Lee, Y.I., Friedman, G.M (1987) Deep-Burial Dolomitization in the Lower Ordovicia Ellenburger Group Carbonate in West Texas and Southeastern New Mexico, Journal of Sedimentary Petrology, 57, 544–557.

[42] Longman, M.W (1980) Carbonate diagenetic textures from near-surface diagenetic environments. American Association of Petroleum Geologists, Bulletin., 64, 461–487.

[43] Machel, H.M (2004) Concepts and models of dolomitization: a critical reappraisal. In: Braithwaite, C.J.R., Rizzi, G., Darke, G. (Eds), The Geometry and petrogenesis of dolomite hydrocarbon reservoirs, Geological Society, London, Special Publication, 235, 7–63.

[44] Madi, A., Bourque, P.A., Mamet, B.L (1996) Depth – related Ecological Zonation of a Carboniferous Carbonate Ramp, Upper Visean of Bechar Basin, Western Algeria, Facies,Erlangen, No.35., P. 59–80.

[45] Maleki, S., Lasemi, Y (2011) Sedimentary Environment Sequence Stratigraphy of the Fahliyan Formation in Assaluyeh (Bidkhon) and Khartang Sections, Southwest Iran. Journal of Basic and Applied Scientific Research., 1(12)2641-2647

[46] Middletone, G.V (1973) Johhanes Walther΄s law of correlation of facies, Bull. Geol. Soc. Of Am, V. 84, P. 979–988.

[47] Miller, J (1988) Cathodoluminescence microscopy. In: Thchniques in Sedimentology (Ed.by M.E.Tucker). pp. 174–190. Blackwells. Oxford.

[48] Moore, C.H (2001) Carbonate reservoir porosity evolution and diagenesis in a sequence stratigraphic framework. Elsevier, Amsterdam, 444 p.

[49] Morrow, D.W (1982) Diagenesis, dolomites, part two: dolomitization models and ancient dolostones. Geoscience Canada 9: 95–107.

[50] Murris, R.J (1980) Middle East: stratigraphic evolution and oil habitat. American Association of Petroleum Geologists, Bulletin 64: 597–618

[51] Purser, B.H., Tucker, M.E., & Zenger, D.H (1994) Problems, progress and future research concerning dolomites and dolomitisation, In: Purser, B., Tucker, M., Zenger, D. (Eds.), Dolomites, A Volume in Honour of Dolomieu, Blackwell, PP. 3–20.

[52] Read, J.F (1980) Carbonate ramp to basin transitions and foreland basin evolution, Middle Ordovician, Virginia Appalachians. American Association of Petroleum Geologists, Bulletin, 64: 1575–1612.

[53] Read, J.F (1985) Carbonate platform facies models. American Association of Petroleum Geologists, Bulletin, 69: 1–21.

[54] Sanders, D (2001) Burrow-mediated carbonate dissolution in rudist biostromes (Aurisina, Italy), implications for taphonomy in tropical, shallow subtidal arbonate environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 168, 39–74.

[55] Scholle, P.A., Ulmer-Scholle, D.S (2003) A Color Guide to the Petrography of Carbonate Rocks: Grains, Textures, Porosity, Diagenesis. American Association of Petroleum Geologists Bulletin, Memoir, v. 77, USA, 474p.

[56] Setudehnia, A (1978) The Mesozoic sequence in southwest Iran and adjacent areas. Journal of Petroleum Geology 1: 3–42.

[57] Shakeri, A., Parham, S (2013) Reservoir Characterization and Quality Controlling Factors of the Fahliyan Formation Located in Southwest Iran. Journal of Sciences, Islamic Republic of Iran 24(2): 135-148

[58] Shebl, H.T., Alsharhan, A.S (1994) Sedimentary facies and hydrocarbon potential of Berriasian- Hauterivian carbonates in centralArabia. In Micropalaeontology and Hydrocarbon Exploration in the Middle East . Edited by M.D. Simmons. Chapman & Hall, London. pp.159-175.

[59] Sherkati, S., Letouzey, J (2004) Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran. Marin and Petroleum Geology 21, 535–554.

[60] Sibley, D.F., Gregg, J.M (1987) Classification of Dolomite Rock Textures: Journal of Sedimentary Petrology, no.57, p. 967–975.

[61] Sinclair, H.D., Sayer, Z.R., Tucker, M.E (1998) Carbonate Sedimentation during early foreland basin subsidence: the Eocene succession of French Alps. in:V. P. Wright, and T.P. Burchette (Eds.), Carbonate Ramps: Geological Society, London, Special Publications., no.149, p.205–228.

[62] Taghavi, A,A., Mørk, A., Emadi, M,A (2006) Sequencestratigraphically controlled dingenesis governs reservoir quality in the Carbonate Dehluran Field. Southwest Iran. Petroleum Geoscience. Vol. 12, pp, 115–126.

[63] Tucker, M.E., Bathurst, R.G.C (1990) CarbonateDiagenesis. Reprint Series Volume 1 of the International Association of Sedimentologists. v 312 pp.

[64] Tucker, M.E (1993) Carbonate Diagenesis and sequence stratigraphy. In: Wright, V.P., (Ed), Sedimentary review/1, Blackwell. Scientific Publication, p. 51–72.

[65] Tucker, M.E (1991) Sedimentary petrography, Black scientific pub., 260p

[66] Tucker, M.E (2001) Sedimentology Petrology: an introduction to the origin of sedimentary rocks: Blackwell, Scientific Publication, London, 260 p.

[67] Tucker, M.E., Wright, V.P (1990) Carbonate Sedimentology: Black well, London, 482 p.

[68] Warren, J.K (1989) Evaporate Sedimentology: Importance in Hydrocarbon Accumulation, Prentice Hall, Englewood Gliffs, 285p.

[69] Warren, J.k (2000) Dolomite: occurrences, evolution and economical important association, Earth science Review, v. 52, 1–87.

[70] Warren, J.K (2006) Evaporites: Sediments, Resources and Hydrocarbons. Springer Verlag, Brunei, 1035 p.

[71] Whittle, G.L., Alshahran, A.S (1994) Dolomitization and certification of Early Eocene Rus Formation in Abu Dhabi, United Arab Emirates, Sedimentary Geology, v. 92, p. 273–258.

[72] Wilson, J.L (1975) Carbonate facies in geological history. Springer, Berlin–Heidelberg, New York. p. 471.

[73] Wilson M.E.J., Evans M.J., Oxtoby N.H., Nas D.S (2007) Donnelly T. & Thirlwall M., Reservoir quality, textural evolution and origin of fault-associated dolomites, AAPG Bulletin., v. 91, PP. 1247-1273.

[74] Witt, W., Gokdag, H (1994) Orbitolinid Biostratigraphy of rhe Shuaiba formation (Aptian), Oman Implication for Reservoir Development. In Micropalaeontology and Hydrocarbon Exploration in the Middle East. Edited by M.D. Simmons. Chapman & Hall, London, 418 pp.

[75] Wynd, j.c (1965) Biofacies of the Iranian Oil Consortium Agreement Area, IOOC. Rep. no. 10.