مطالعه فرآیندها تاریخچه دیاژنز سنگ‌های کربناته هم‌ارز سازند بادامو (ژوراسیک زیرین – میانی) در شمال طبس، شرق ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه بیرجند، بیرجند

چکیده

به منظور تفسیر توالی دیاژنزی و تاریخچه دیاژنزی سنگ­های کربناته سازند بادامو (ژوراسیک زیرین- میانی)، برش برگزیده به ضخامت 101 متر با لیتولوژی گرینستون تا پکستون در شمال طبس (شرق ایران) مورد مطالعه قرار گرفته است. فرآیندهای دیاژنزی مؤثر بر این سنگ­ها شامل میکرایتی شدن، سیمانی شدن، فشردگی و انحلال فشاری، نئومورفیسم، دولومیتی شدن، شکستگی و پر شدگی رگه، آشفتگی زیستی و فابریک ژئوپتال است. نتایج آنالیز عنصری نشان­دهنده آن است که مقدار آهن و منگنز با یکدیگر و با عناصر استرانسیم و سدیم همبستگی مثبت و با عنصر منیزیم همبستگی منفی دارند. بر اساس شواهد پتروگرافی و داده­های ژئوشیمیایی، توالی پاراژنزی سنگ­های آهکی سازند بادامو در چهار محیط دریائی، آب شیرین، تدفینی و بالا آمدگی روی داده و نهشته­ها طی سه مرحله ائوژنز، مزوژنز و تلوژنز تحت تأثیر قرار گرفته­اند.

کلیدواژه‌ها


عنوان مقاله [English]

Study of processes and diagenetic sequence of carbonate rocks of the Badamu Formation (Lower–Middle Jurassic) in north of Tabas, east of Iran

نویسندگان [English]

  • Kh. Mohammadi Ghiyasabadi
  • G. Mirab Shabestari
  • A. R. Khazaei
چکیده [English]

For the purpose of interpretation of paragenetic sequence and post-depositional history of the carbonate rocks of Badamu Formation carbonate rocks (Lower–Middle Jurassic), a selected section (thickness= 101 m) including grainstones to packstones in north of Tabas city (east of Iran) has been studied. The main diagenetic processes are micritization, cementation, compaction and dissolution, neomorphism, dolomitization, fracturing and pore-filling, bioturbation and geopetal fabric. The results of geochemical analysis reveal positive relationships between Fe, Mn, Sr and Na amounts, whereas Mg shows negative relation to the others. According to the petrographic and geochemical evidences, paragenetic sequence of the Badamu Formation carbonates has been purposed. Hence, it has been concluded that four different environments (i.e.  marine, meteoric, burial and uplift) are recognizable and also the sediments have been affected during eogenesis, mesogenesis and telogenesis stages.

کلیدواژه‌ها [English]

  • Badamu Formation
  • Lower-Middle Jurassic
  • carbonate rocks
  • East of Iran
  • paragenetic sequences

منابع

[1]  آقانباتی، ع (1373) نقشه زمین­شناسی 1:100000 بشرویه، ورقه 7457. سازمان زمین­شناسی کشور.

[2]  تاکر، م. ای (1386) سنگ­شناسی رسوبی. ترجمه سیدرضا موسوی حرمی و اسدا... محبوبی، نشر جهاد دانشگاهی مشهد، 493 ص.

[3]  رحیم­پور بناب، ح (١٣90) سنگ­شناسی کربناته ارتباط دیاژنز و تکامل تخلخل، انتشارات دانشگاه تهران، ٤٨٧ ص.

[4]  رولینسون، ه (1381) کاربرد داده­های ژئوشیمیایی (ارزیابی، نمایش، تفسیر)، ترجمه علیرضا کریم­زاده ثمرین، انتشارات دانشگاه تبریز، 558 ص.

[5]  فولک، ر (١٣٨٧)پترولوژی سنگ­های رسوبی، ترجمه محمدحسین آدابی و غلامرضا میراب­شبستری، انتشارات آرین زمین، ٣٦٥ ص.

[6] محمدی غیاث­آبادی، خ (1391) مطالعه پتروگرافی و محیط رسوبی سازند بادامو (ژوراسیک زیرین- میانی) در کوه­های شتری، شرق ایران.، پایان­نامه کارشناسی­ارشد، دانشگاه بیرجند، 163 ص.

[7]  Adabi, M.H. & Rao, C.P (1996) Petrographic, elemental and isotopic criteria for the recognition of carbonate mineralogy and climates during the Jurassic (e.g., from Iran and Australia): in Proceedings, 13th Geological Conference Australia, (abst), p. 6.

[8]  Adabi, M.H., & Asadi Mehmandosti, E (2008) Microfacies and geology of the Ilam Formation in the Tang-E Rashid area, Izeh, S.W. Iran: Journal of Asian Earth Sciences, v. 33, p. 267-277.

[9]  Adams, A.E., & Mackenzie, W.S (1998) A colour atlas of carbonate sediments and rocks under the microscope: Longman, London, 180p.

[10]   Ando, A., Kawahata, H., & Kakegawa, T (2006) Sr/Ca ratios as indicators of varying modes of pelagic carbonate diagenesis in the ooze, chalk and limestone realms. Sedimentary Geology, v. 191, p. 37-53.

[11]   Bathurst, R.G.C (1975) carbonate sediments and their diagenesis: Elsevier, North Holland, 658 p.

[12]   Budd, D.A (1992) Dissolution of high-Mg calcite fossils and formation of biomolds during mineralogical stabilization. Carbonates and Evaporates, v. 7, p. 74-81.

[13]   Burley, S.D., Kantorowicz, J.D. & Waugh, B (1985) Clastic diagenasis. In, Brenchley P.J. & Williams B.P.J. (Eds.), Sedimentology, Recent Developments and Applied Aspects. Geological Society of London Special Publication, c 18, p. 189-226.

[14]   Dickson, J.A.D (1965) A modified staining technique for carbonates in thin section: Nature, v. 205, 587pp.

[15]   El-Saiy, A.K., & Jordan, B.R (2007) Diagenetic aspects of Tertiary carbonates west of the Northern Oman Mountains, United Arab Emirates: Journal of Asian Earth Sciences, v. 31, p. 35-43.

[16]   Flügel, E (2010) Microfacies of carbonate Rocks, Analysis, Interpretation and Application. Springer-Verlag, Berlin, 976p.

[17]   Garcia-Pichel, F (2006) Possible mechanisms for the boring on carbonate by microbial phototrophs: Sedimentary Geology, v. 185, p. 205-213.

[18]   Kim, Y., & Lee, Y.L (2004) Diagenesis of shallow marine sandstones, the Lower Ordovician Dongjeom Formation, Korea, response to relative sea-level changes. Journal of Asian Earth Sciences, v. 23, p. 235-245.

[19]   Longman, M. W (1980) Carbonate diagenetic textures from near surface diagenetic environments. American Association of Petroleum Geology Bulletin, v. 64, p. 461-487.

[20]   MacNeil, A. & Jones, B (2003) Dolomitization of the Pedro-castle Formation (Pliocene), Cayman Brac, British West Indies: Sedimentary Geology, v. 162, p. 219-238.

[21]   Mahboubi, A., Moussavi-Harami, R., Brenner, R.L., & Gonzalez, L.A (2002) Diagenetic history of late Paleocene potential carbonats reservoir Rock, Kopet Dagh basin, NE Iran, Journal of Petroleum Geology, v. 25, p. 465-484.

[22]   Milliman, J.D (1974) Marine carbonates: New York, Springer-Verlag, 375 p

[23]   Rao, C.P. & Adabi, M.H (1992) Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia: Marine Geology, v. 103, p. 249-272.

[24]   Rao, C.P (1991) Geochemical differences between subtropical (Ordovician), temperate (Recent and Pleistocene) and subpolar (Permian) carbonates, Tasmania, Australia: Carbonates and Evaporites, v. 6, p. 83-106.

[25]   Read, J.S., Eriksson, K.A. & Kowalewski, M (2005) Climate, depositional and burial controls on diagenesis of Appalachian Carboniferous sandstone: qualitative and quantitative methods. Sedimentary Geology, v. 176, p. 225-246.

[26]   Seyed-Emami, K (1967) Zur Ammoniten Fauna and strtigraphie der Badamu kalke bei Kerman, Iran (Jura-oberes unter Toarcium bis mitteles Bujucium). Unpub. Thesis Indwing Maximilian Univ, Munchen,. 180p.

[27]   Seyed-Emami, K (1971) The Jurassic Badamu Formation in the Kerman region with remarks on the Jurassic stratigraphy of Iran, Geological Survey of Iran, Report No. 19, p. 5-79.

[28]   Seyed-Emami, K (1988) Eine Ammoniten-Fauna aus der Badamu-Formation (Unterbajacium, Sauzei-Zone westlich von Kerman, Zentral Iran). Palaont. Z. 62. p. 71-86.

[29]   Tucker, M.E., & Wright, V.P (1990) Carbonate Sedimentology: Blackwell, Oxford, 482 p.

[30]   Tucker, M.E (2003) Sedimentary Petrology: An Introduction to the Origion of Sedimentary Rocks: Blackwell, Scientific Publication, London, 260 p.

[31]   Veizer, J (1983) Trace element and isotopes in sedimentary carbonate, Review in Mineralogy, v. 11, p. 265-300.

[32]   Winefield, P.R., Nelson, C.S., & Hodder, A.P.W (1996) Discriminating temprate carbonates and their diagenetic environments using bulk elemental geochemistry, a reconnaissance study based on New Zeland Cenozoic Limestones. Carbonates and Evaporites, v. 11, p. 19-31.