رخساره‌سنگی، پتروفاسیس و محیط رسوبی نهشته‌های ژوراسیک در زون بینالود در برش بازحوض، جنوب مشهد

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشگاه آزاد اسلامی، واحد مشهد

2 گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه فردوسی مشهد، مشهد

چکیده

رسوبات سیلیسی آواری ژوراسیک میانی در بخش شرقی رشته کوه­های بینالود گسترش زیادی دارد و از کنگلومرا، ماسه­سنگ و مقادیر زیادی رسوبات دانه­ریز تشکیل شده است. مرز زیرین و بالایی این توالی به ترتیب با فیلیت تیره­رنگ و سنگ­آهک­های خاکستری روشن، مشخص است. در این مطالعه آنالیز رخساره‌های سنگی به منظور تفسیر محیط رسوبی و موقعیت تکتونیکی منشا نهشته‍های سیلیسی آواری ژوراسیک زون بینالود در برش باز حوض واقع در جنوب مشهد انجام گرفته است. با تکیه بر ویژگی­های رخساره­ها و شکل هندسی لایه­ها توالی مورد مطالعه به 10 رخساره سنگی در ضخامتی حدود 160 متر تقسیم شده­اند. رخساره­های سنگی در 4 گروه دانه درشت (Gcm,Gmm,Gh,Gp)، دانه­متوسط (Sh, Sr,Sm) و دانه­ریز (Fl,Fm) و بیوشیمیایی (C) دسته­بندی شده­‌اند. بر مبنای شواهد زیر محیط تشکیل این رسوبات دلتای تحت تسلط رودخانه است: رخساره­های رسوبی: رسوبات به سمت بالا درشت­شونده، رسوبات زغال، آثار برگ درختان، ترک سین­آرسیس، ساختارهای رسوبی یک جهتی مانند ریپل­مارک، طبقه­بندی مورب، عدم وجود ساختارهای دوجهتی. مطالعات پتروگرافی منجر به شناسایی 6 پتروفاسیس کنگلومرایی و ماسه­سنگی شده است. قرار دادن داده­های حاصل بر روی نمودارQt, F, L نشان­دهنده منشا با موقعیت تکتونیکی برخاستگاه چرخه مجدد رسوبی برای این نهشته­ها می­باشد. هم­چنین قرار دادن داده­های حاصل بر روی نمودار چهارتائی باسو و نمودار Q,F,L، به ترتیب نشان­دهنده منشأ دگرگونی درجه پایین تا متوسط و شرایط آب و هوای مرطوب برای ماسه­سنگ­های رسوبات ژوراسیک در زمان تشکیل بوده. با توجه به برخورد صفحات توران و ایران و بسته شدن دریای پالئوتتیس در شمال­شرق ایران رسوبات ژوراسیک در ناحیه مورد مطالعه از فرسایش ارتفاعات تشکیل شده مشتق شده­اند. این نتایج مبنی بر وجود شرایط آب و هوای مرطوب است.

کلیدواژه‌ها


عنوان مقاله [English]

Lithofacies, Petrofacies and depositional environment of Jurassic deposits in Binalood Zone in the Bazeh hoz section, South of Mashhad

نویسندگان [English]

  • M.R. Poursoltani 1
  • M. Jamali 1
  • Y. Nasiri 2
چکیده [English]

The Middle Jurassic scilisiclastic doposit has a good exposure in the East of the Binaload Zone and composed of conglomerate, sandstone and high amounts of fine grained sediments. The lower and upper boundaries of section are sharp respectively with Mashhad phylite and limestone. In this study lithofacies analysis in order to interpretation depositional environment and the origin of tectonic setting of Jurassic silisiclastic deposits in Binaload Zone were investigated in Baze hoz section, soth of Mashhad. Relying on the facies characteristics and stratal geometries the silisiclastic succession are divided into 10 lithofacies in the 160 meter thick. lithofacies are classified into 4 categories including coarse grain (Gcm,Gmm,Gh,Gp), medium grain (Sh, Sr,Sm), fine grain (Fl,Fm) and biochemical (C).  Based on the following evidence, the Jurassic silisiclasic sediments have been deposited in Delta river system: Sedimentary facies: coarsening upward deposit, coal deposite, Leave fossils, syneresis crack and unidirectional sedimentary structures such as ripplemark, cross bedding, lack of Bi-directional structure. Petrographic studies led to the identification 6 petrofacies conglomerate and sandstone. Plotted data on Qt, F, L diagram, indicate recycled orogene for this deposits. Also plot data on Basu and Q, F, L diagrams, respectively shows low to medium grade metamorphic and hiumid climatic condition for sandstones of Jurassic sediments for these deposits at the time of formation. According to Turan and Iran clash pages and closing the Paleo-Tethys Sea in NE Iran Jurassic sediments in the study area composed of erosion of upland areas. These results indicate a wet weather conditions.

کلیدواژه‌ها [English]

  • Petrofacies
  • Lithofacies
  • Binalood

منابع

[1]   آقانباتی، ع.، افشارحرب، ع.، مجیدی، ب.، علوی تهرانی، ن (1365) نقشه زمین­شناسی مشهد (250000: 1)، انتشارات سازمان زمین­شناسی کشور.

[2]   پورسلطانی، م. ر.، موسوی­حرمی، ر.، لاسمی، ی (1385) تفسیر محیط­رسوبی سازند کشف­رود بر مبنای مطالعه ایکنوفسیل­ها در شمال خاور ایران: فصلنامه علوم­زمین، ش 65، ص. 185- 170.

[3]   حسینی، ح.، نجفی، م.، موسوی­حرمی، ر.، دهنوی، د (1388) تفسیر محیط­رسوبی و چینه­نگاری سکانسی نهشته­های نئوژن، شرق کپه­داغ، 27 امین گردهمایی علوم­زمین، بهمن 88.

[4]   دهنوی، د.، موسوی­حرمی، ر.، قرایی، م.، قائمی، ف (1389) آنالیز رخساره‌های سنگی و تعیین محیط تشکیل نهشته‌های الیگوسن زون بینالود در برش باغشن گچ (شمال نیشابور)، 14 امین همایش انجمن زمین­شناسی ایران، شهریور 89.

[5]   قائمی، ف.،  قائمی، ف.، حسینی، ف (1999)  نقشه زمین­شناسی نیشابور (1:100000): انتشارات سازمان زمین شناسی کشور.

[6]   موسوی­حرمی، ر.، محبوبی، ا.، خردمند، ع.، زندمقدم، ح (1387) آنالیز رخساره­های سنگی و سیکل­های به طرف بالا ریزشونده در نهشته­های سیلیسی آواری. سازند داهو (کامبرین پیشین)، واقع در شرق و جنوب­شرق زرند، شمال­غرب کرمان: فصلنامه زمین­شناسی ایران، ش6، ص. 85-71

[7]  Alavi, M (1992) Thrust tectonics of the Binalood region, NE Iran: Tectonics, v. 11, p. 360- 370.

[8]  Allen, P.J; R. Fielding, C (2007) Sedimentology and stratigraphic architecture of the Late Permian Betts Greek Beds, Queens land, Australia, Sedimentar Geology 202, pp. 5-34.

[9]  Bann, K.L. and Fielding, C.R (2004) An integrated ichnological and sedimentological comparison of non-deltaic shoreface and  subaqueous delta deposits in Permian  reservoir units of Australia. In McIlroy, D. (ed.), The Application of Ichnology to Palaeo environmental and Stratigraphic  Analysis.  Geological Society of London Special Publication v. 228, p.  273-310.

[10]   Basu, A., S. Young, L. Suttner, W. James, and G.H. Mack (1975) Re-evaluation of the use of undulatory extinction and crystallinity in detrital quartz for provenance interpretation: Journal of Sedimentary Petrology, v. 45, p. 873–882.

[11]   Bhattacharya, J.P (2006)  Deltas. In Walker, R.G. and Posamentier, H. (Eds): Facies Models Revisited.  SEPM Spec. Publ., v. 84, p. 237–292.

[12]   Bhattacharya, J.P. and MacEachern, J.A (2009) Hyperpycnal rivers and prodeltaic shelves in the Cretaceous Seaway of North America. Journal of Sedimentary Research, v. 79, p. 184–209.

[13]   Bhattacharya, J.P. Garza, Y.Z.D and Blankenship, E (2011) Evaluating delta asymmetry using three-dimensional facies architecture and ichnological analysis, Ferron ‘Notom Delta’, Capital Reef, Utah, USA. Sedimentology. v. 58, p. 478–507.

[14]   Blair, T.C. and Mcpherson, J.G (1999) Grain-size and textural classification of coarse sedimentary particles, Journal of Sedimentary Research, v. 69, no. 1, p. 6-19.

[15]   Blatt, H., Middleton, G.V., and Murray, R (1980) Origin of Sedimentary Rocks: 2nd ed., Prentice Hall Inc., Englewood Cliffs, NewJersy, 782p.

[16]   Bordy, E.M., O. Catuneanu (2002) Sedimentology of the lower Karoo Supergroup fluvstratain the Tuli Basin,South Africa: African Earth Sci, v. 35, p. 503–521.

[17]   Catuneanu, O (2006) Principles of Sequence Stratigraphy (First Edition): Elsevier-Amsterdam, p. 375.

[18]   Capuzzo, N., A. Wetzel (2004) Facies and basin architectural of the Late Carboniferous Salvan–Dorénaz Continental basin (WesternAlps,Switzerland/France): Sedimentology, v. 51, p.675– 697.

[19]   Caltorti, M., Pieruccini, P., Rustioni, M (2007) The Barga Basin (Tuscany): A record of Plio-Pleistocene mountain building of the North Apennines, Italy, Quaternary International, v. 10, 45 p.

[20]   Corcoran, P.L; Muller, W.U. and Padgham, W.A (1999) Influence of tectonism and climate on lithofacies distribution and sandstone and conglomerate composition in the Arcean Beaulieu Rapids Formation, Northwest Territories, Canada. Percambrian Research, V. 95, P. 175-204.

[21]   Cornelious, E.U; Christoph, H. and Carola, H (2005) Facies analysis and basin architecture of the Neogene Subandean synorogenic wedge, southern Bolivia, Sedimentary Geology, v.180, p.91-123.

[22]   Cummings, D., Jin,  J.,  Choi,  K.,  Dalrymple,  R (2015) The Tide Dominated Han River Delta. Elsevier Science & Technology Books, 532 pp.

[23]   Dickinson, W.R (1985) Interpreting provenance relation from detrital modes of sandstones. In: Zuffa, G.G. (Ed.), Provenance of Arenites, Reidel, Dordrecht, p. 333–363.

[24]   Fanget, A., Berné, S., Jouet, G., Bassetti, M., Dennielou, B., Maillet, G.M., Tondut, M (2014) Impact of relative sea level and rapid climate changes on the architecture and lithofacies of the Holocene Rhone subaqueous delta (Western Mediterranean Sea). Sedimentary Geology, v. 305, p. 35–53.

[25]   Fielding, C.R., H.E. La Garry, L.A. La Garry, B.E. Bailey, and J.B. Swinehart (2007)  Sedimentology of the whiteclay Gravel Beds (Ogallala Group) in northwestern Nebraska, USA: Structurally controlled drainage promoted by Early Miocene uplift of the Black Hills Dome: Sedimentary Geology, v. 202, p. 58-71.

[26]   Folk, R.L (1980) Petrology of sedimentary rocks. Hemphill, Austin, Texas, v. 159.

[27]   Gao, C; Boreham, S; Preece, R.C; Gibbard, P.L; Briant, R.M (2007) Fluvial response to  rapid climate change during the Devensian (Weichselian) Late glacial in the River Great Ouse, southern England, UK, Sedimentary Geology, v. 202, p. 193-210p.

[28]   Gingras, M.K., MacEachern, J.A., Pemberton, S.G (1998) A comparative analysis of the ichnology of wave- and river-dominated allomembers of the Upper Cretaceous Dunvegan Formation. Bull. Can. Petrol. Geol., v. 46, p. 51–73.

[29]   Gomez, J.L; Chivelet , J.M; and Palma, R.M (2009) Architecture and development of the alluvial sediments of the Upper Jurassic Tordillo Formation in the Canada Ancha Valley, northern Neuquen Basin, Argentina, Sedimentary Geology, v. 219, p. 180-195.

[30]   Hansen,  C.D.,  and  MacEachern,  J.A (2007) Application  of  the  asymmetric  delta model  to  along-strike  facies variation in a mixed  wave- and  river-influenced  delta lobe,  Upper Cretaceous Basal Belly River  Formation, Central Alberta.  In  MacEachern,  J.A.,  Bann,  K.L.,  Gingras,  M.K.  and  Pemberton,  S.G.  (Eds.),  Applied Ichnology . SEPM Short Course Notes, v. 52, p. 256–269.

[31]   Hossain, H.M.Z., B.P. Roser., J.I.Kimura (2010) Petrography and whole-rock geochemistry of the Tertiary Sylhet succession, northeastern Bengal Basin, Bangladesh: Provenance and source area weathering: Sedimantary Geology, v. 228, p. 171-183.

[32]   Ingersoll, R.V., C.A. Suczek (1984) Petrology and provenance of Neogene sand from Nicobar and Bengal fans. DSDP sites 211 and 218: Journal of Sedimentary Petrology, v. 49, p. 1217-1228.

[33]   Jin, Z., F . Li, J. Cao, S. Wang, and  J.Yu (2006) Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: Implications for  provenance, sedimentary sorting and catchment weathering: Geomorphology, v. 80, p. 147–163.

[34]   Khalifa, M., Q. Catuneanu (2008) Sedimentary of the bahariya Formation (Early Cenomanian), Bahariya Oasis, Western Desert, Egypt: Journal of African Earth Sciences, v. 51, p. 89- 103.

[35]   Kim, S.B., Y.G. Kim, H.R. Jo, K.S. Jeang, and S.K. Cjough (2009) Depositional facies, architecture and environments of the Sihwa Formation (Lower Cretaceous), mid-west Korea with special refrence to dinosaur eggs: Cretaceous Research, v. 30, p. 100- 126.

[36]   Lin, C.M; Zhuo, H.C. and Gao, S (2005) Sedimentary facies and evolution in the Qiantang River incised valley, eastern China, Marine Geology, v. 219, p.235-259.

[37]   Lowey, G.W (2007) Lithofacies analysis of the Dezadeash Formation (Jura–Cretaceous), Yukon, Canada: The depositional architecture of a mud/sand-rich turbidite system: Sedimentary Geology, v. 198, p.  273– 291.

[38]   MacEachern, J.A., Bann, K.L., Bhattacharya, J.P. Howell, C.D (2005) Ichnology of deltas. In Giosan, L., Bhattacharya, J.P. (eds.), River Deltas: Concepts, Models, and Examples. SEPM Spec. Publ., v. 83, p. 49–85.

[39]   MacEacherrn, J.A., Bann, K.L (2008) The  role of ichnology in refining  shallow  marine  facies models. In: Hampson, G., Steel, R., Burgess, P., Dalrymple, R. (Eds.), Recent Advances in Models of Siliciclastic Shallow-Marine Stratigraphy: SEPM Special Publication, v. 90, p. 73-116.

[40]   Miall, A.D (2006) The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology: Springer-Verlag, p. 582.

[41]   Miall, A.D (1996) The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer-Verlag, New York, 582p.

[42]   Miall, A.D (2000) Principle of Sedimentary Basin Analysis. Springer- Verlag, New York, 668p.

[43]   Nalpas, T., M.P. Dabard, G. Ruffet, A. Vernon, C. Mpodozis, A. Loi, and G. Heralli (2008) Sedimentation and preservation of the Miocene Atecama Gravels in the pedernales- Chararal Area, Northern Chile: Climatic or tectonic control:  Tectonophysics, v.459, p. 161- 173.

[44]   Park, Mi Eun, Cho, Hyeongseong, Son, Moon, Sohn, Young Kwan (2013) Depositional processes, paleoflow patterns, and evolution of a Miocene gravelly fan-delta system in SE Korea constrained by anisotropy of magnetic susceptibility analysis of interbedded mudrocks. Mar. Pet. Geol. v. 48, p. 206–223.

[45]   Pettijohn, F.J (1975) Sedimentary Rocks: Harper and Row, New York, p. 628.

[46]   Roberts, E (2007) Facies architecture and depositional environments of the Upper Cretaceous Kaiparowits Formation, southern Utah: Sedimentary Geology, v. 197, p. 207– 233.

[47]   Rossi, V., Steel, R.J (2016) The role of tidal, wave and river currents in the evolution of mixed-energy deltas: Example from the Lajas Formation (Argentina). Sedimentology (In press). doi: 10.1111/sed.12240

[48]   Suttner, L.J., A. Basu, and G.H. Mack (1981) Climate and the origin of quartz arenites: Journal of  Sedimentary Petrology, v. 51, p. 1235- 1246.

[49]   Tang, Y., Xu, Y., Qu, J.H., Meng, X.C., Zou, Z.W (2014) Fan-delta group characteristics and its distribution of the Triassic Baikouquan reservoirs in Mahu sag of Junggar basin. Xinjiang Petrol. Geol. V. 35, p. 628–635.

[50]   Tortosa, A., Palomares, M., Arribas, J (1991) Quartz grain types in Holocene deposits from the Spanish Central System: some problems in provenance analysis. In: Morton, A.C., Todd, S.P., Haughton, P.D.W. (eds.), Developments in Sedimentary Provenance Studies, Special Publication-Geological Society, v. 57, p. 47– 54.

[51]   Tucker, M.E (2001) Sedimentary Petrology (Third Edition):  Blackwell-Oxford, p. 260.

[52]   Wang, Y. and Yan, D.P (2003) Fluvial gravel facies architecture of late Pleistocene age at Po Chue Tam, Lantau Island, Hong Kong, tectonic versus climatic control?, Journal of Asian Earth Sciences, v.21, p. 1113-1123.

[53]   Zaid, S.M (2012) Provenance, diagenesis, tectonic setting and geochemistry Rudes Sandstone (Lower Miocene) Wada Field, Gulf Suez, Egypt, Journal of African Earth Science 66-67, 56-71.