شناسایی و تفسیر رخساره‌های رسوبی و دیاژنزی از طریق مفهوم رخساره لاگ‌ها، مطالعه موردی از مخزن سروک در یکی از میادین بزرگ نفتی جنوب غرب ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشگاه صنعت نفت، پردیس صنایع بالادستی، پژوهشکده علوم زمین، تهران

2 مدیریت برنامه‌ریزی تلفیقی شرکت نفت ایران، تهران

چکیده

رخساره­های رسوبی و فرآیندهای دیاژنزی عمدتا توسط مطالعات دقیق پتروگرافی و توصـیف مغزه­ها و رخـنمون­ها شـناسایی و تفسـیر می­شوند. تمرکز این تحقیق، بر شناسایی رخساره­های رسوبی و دیاژنزی از طریق مفهوم رخساره لاگ­ها در بخش مخزنی سازند سروک در یکی از میادین بزرگ ناحیه دشت آبادان واقع در جنوب­غرب ایران می­باشد. به منظور رسیدن به این هدف، از یک رویکرد سه مرحله به صورت زیر استفاده شده است. ابتدا مطالعه مقاطع نازک میکروسکوپی و توصیف مغز­ه­ها به منظور شناسایی فرآیندهای رسوبی و دیاژنزی در یک چاه کلیدی با 260 متر مغزه و 760 مقطع نازک میکروسکوپی صورت گرفته است. آنالیز رخساره­ای منجر به شناسایی 12 میکروفاسیس در شش کمربند رخساره­ای لاگون، شول، رودیست بایوستروم، شیب حوضه و بخش کم عمق و عمیق دریای باز گردید. بر اساس این نتایج به نظر می­رسد که توالی مورد مطالعه، در یک پلاتفرم شلف کربناته نهشته شده است. فرآیندهای دیاژنزی شامل میکرایتی شدن، زیست آشفتگی، تبلور مجدد، سیمانی شدن، انحلال، تراکم و شکستگی توالی سازند سروک را پس از نهشته شدن تحت تاثیر قرار داده است. در این مطالعه به منظور مقایسه بهتر توزیع فرآیندهای دیاژنزی و رخساره لاگ­ها، رخساره­های دیاژنزی معرفی شده است. سه رخساره دیاژنزی منطبق بر توالی­های با انحلال و سیمانی شدن پایین (رخساره 1)، انحلال بالا (رخساره 2) و سیمانی شدن بالا (رخساره 3) معرفی گردیده است. سپس پنج رخساره لاگ توسط روش خوشه­بندی سلسله مراتبی شناسایی شد. مقایسه نتایج توزیع رخساره لاگ­ها با تغییرات رخساره­ای و دیاژنزی، انطباق بالای بین ناهمگنی­های زمین­شناسی با ویژگی­های پتروفیزیکی را نشان داد. در نهایت در چاه­های فاقد مغزه پس از مشخص شدن ارتباط توزیع رخساره لاگ­ها با رخساره­های رسوبی و دیاژنزی، این پارامترهای مهم زمین­شناسی شناسایی شده است. رویکرد مورد استفاده در این مطالعه در نشان دادن ناهمگنی­های رخساره­ای و دیاژنزی مخزن سروک در میدان مورد مطالعه کارآمد می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Recognition and interpretation of depositional and diagenetic facies from log facies concept, a case study from the Sarvak reservoir in a giant oil fields, SW Iran

نویسندگان [English]

  • A. Assadi 1
  • J. Honarmand 1
  • A. Rahmani 2
  • A.R. Raisi 2
چکیده [English]

Depositional facies and diagenetic features are usually understood by their detailed petrographic studies and core or outcrop description. This study focuses on identification and interpretation of depositional and diagenetic facies from log facies concept in the Sarvak reservoir of a giant oil fields of the Abadan Plain, SW Iran. In order to achieve this, three step approach is used. Firstly core description and thin section study were carried out to determine sedimentary and diagenetic processes in one studied key well with 265 m core and 760 thin-sections. Facies analysis led to the recognition of 12 microfacies representing six facies belts, which are lagoon, shoal, rudist biostrome, slope, proximal and distal open marine. According to the results, it seem that studied interval have been deposited in a carbonate shelf platform. Diagenetic processes include micritization, bioturbation, recrystallization, cementation, dissolution, compaction and fracturing have been affected the Sarvak reservoir after deposition. In this study we introduced diagenetic facies as a method for effective comparison between diagenetic alterations and log facies distribution. Three diagenetic facies were recognized that coincide with intervals with low cementation and dissolution (facies 1), high dissolution (facies 2) and high cementation (facies 3). Secondly, five log facies were identified by hierarchical clustering method. The number of clusters were determined based on dendrogram tree and geological heterogeneity. Comparing the results of log facies distribution with depositional and diagenetic changes, show a good agreement between geological and petrophysical heterogeneity. Finally, identification of depositional facies belts and diagenetic facies after calibration of log facies with this geological properties, were carried out in un-cored wells by log facies approach. The presented approach in this study is effective in highlighting main depositional and diagenetic heterogeneity of the Sarvak reservoir in studied field.

کلیدواژه‌ها [English]

  • Sarvak reservoir
  • Abadan Plain
  • depositional facies
  • diagenetic facies
  • log facies

منابع

[1]  اسعدی، ع.، هنرمند، ج، معلمی، س، ع.، عبداللهی­فرد، ا (139۵) تاثیر فرآیندهای دیاژنزی بر کیفیت مخزنی بخش بالایی سازند سروک در یکی از میادین هیدروکربنی دشت آبادان، جنوب غرب ایران. مجله پژوهش­های چینه­نگاری و رسوب­شناسی اصفهان. جلد ۶2، شماره 1، ص. 58-80.

[2]   مطیعی، ه (1372) زمین­شناسی ایران: زمین­شناسی نفت زاگرس-1، سازمان زمین­شناسی کشور. ص. 572.

[3]  هنرمند، ج.، اسعدی، ع.، معلمی، س، ع.، عبداللهی فرد،ا.، منیبی، س (139۵) ریز رخساره­ها و محیط رسوبی سازند سروک در یکی از میادین هیدروکربنی جنوب­غرب ایران. دوفصلنامه رخساره­های رسوبی مشهد، سال 9، شماره 2.

[4]  Abdollahie Fard, I. A., Braathen, A., Mokhtari, M., and Alavi, S. A (2006) Interaction of the Zagros Fold–Thrust Belt and the Arabian-type, deep-seated folds in the Abadan Plain and the Dezful Embayment, SW Iran. Petroleum Geoscience, v. 12, no. 4, p. 347-362.

[5]  Abdollahie Fard, I. A., Mokhtari, M., Alavi, S. A (2007) The main structural elements of the Abadan Plain (SW Iran) and the N. Persian Gulf based on the integrated geophysical data. Geophysical Research Abstracts, v. 9, p. 111-146.

[6]  Ahr, W.M (2008) Geology of carbonate reservoirs. John Wiley and Sons, Chichester, 296 p.

[7]  Alavi, M (2007) Structures of the Zagros fold-thrust belt in Iran. American Journal of Sciences, v. 307, p. 1064–1095.

[8]  Alsharhan AS and Nairn AEM (1990) A review of the Cretaceous formations in the Arabian Peninsula and Gulf Part III, Upper Cretaceous Aruma Group stratigraphy and paleogeography Journal of Petroleum Geology, v. 13, no. 3, p. 247-266.

[9]  Alsharhan, A.S., Nairn, A.E.M (1997) Sedimentary basins and petroleum geology of the Middle East. Elsevier, Amsterdam, 843 p.

[10]   Aqrawi, A. A. M., Mahdi, T. A., Sherwani, G. H., Horbury, A. D (2010) Characterization of the Mid-Cretaceous Mishrif reservoir of the southern Mesopotamian Basin, Iraq. AAPG Middle East Geoscience Conference and Exhibition, Manama, Bahrain, p. 7-10.

[11]   Assadi, A., Honarmand, J., Moallemi, S.A., Abdollahie-Fard, I (2016) Depositional environments and sequence stratigraphy of the Sarvak Formation in an oil-field on the Abadan Plain, SW Iran, Fcaies, v. 62. p. 1-22.

[12]   Bhatt, A., and Helle, H. B (2002) Committee neural networks for porosity and permeability prediction from well logs. Geophysical Prospecting, v. 50, no. 6, p. 645-660.

[13]   Christian, L (1997) Cretaceous Subsurface Geology of the Middle East Region. GeoArabia, v. 2, no. 3, p. 239-256.

[14]   Dercourt, J. et al, L. P. Zonenshain, L-E. Ricou, V. G. Kazmin, X. Le Pichon, A. L. Knipper, Cl Grandjacquet (1986) Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophysics, v. 123, no. 1, p. 241-315.

[15]   Dickson, J. A. D (1966) Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Research, v. 36, no. 2, p. 491-505.

[16]   Ehrenberg, S. N., Aqrawi, A. A., and Nadeau, P. H (2008) An overview of reservoir quality in producing Cretaceous strata of the Middle East. Petroleum Geoscience, v. 14, no. 4, p. 307-318.

[17]   Esrafili-Dizaji, B. and Rahimpour-Bonab, H (2009) Effects of depositional and diagenetic characteristics on carbonate reservoir quality: a case study from the South Pars gas field in the Persian Gulf. Petroleum Geoscience, v.15, p. 1–22.

[18]   Esrafili-Dizaji, B., Rahimpour-Bonab, H., Mehrabi, H., Afshin, S., Harchegani, F. K., Shahverdi, N (2015) Characterization of rudist-dominated units as potential reservoirs in the middle Cretaceous Sarvak Formation, SW Iran. Facies, v. 61, no. 3, p. 1-25.

[19]   Flugel, E (2010) Microfacies of carbonate rocks. Springer-Verlag, Berlin, 976 p.

[20]   Fu, G. M., Qin, X. L., Qing, M., Zhang, T. J., & Yang, J. P (2009) Division of diagenesis reservoir facies and its control—case study of Chang-3 reservoir in Yangchang formation of Fuxian exploration area in northern Shaanxi. Mining Science and Technology, v. 19, p. 537-543.

[21]   Ghabeishavi A, Vaziri-Moghaddam H, Taheri A, Taati F (2010) Microfacies and depositional environment of the Cenomanian of the Bangestan anticline, SW Iran. Journal of Asian Earth Sciences, v. 37, p. 275-285.

[22]   Hajikazemi, E., Al-Aasm, I. S., & Coniglio, M (2010) Subaerial exposure and meteoric diagenesis of the Cenomanian-Turonian Upper Sarvak Formation, southwestern Iran. In: Leturmy, P. & Robin, C. (Eds), Tectonic and Stratigraphic Evolution of Zagros and Makran during the Mesozoic–Cenozoic, Geological Society, London, Special Publications 330, pp.253-272.

[23]   Hajikazemi, E., Al‐Aasm, I. S., Coniglio, M (2012) Chemostratigraphy of Cenomanian–Turonian carbonates of the Sarvak Formation, Southern Iran. Journal of Petroleum Geology, v. 35, no. 2, p. 187-205.

[24]   Heydari, E (2008) Tectonic versus eustatic control on supersequences of the Zagros Mountains of Iran. Tectonophysics, v. 451, pp. 56-70.

[25]   Hollis, C (2011) Diagenetic controls on reservoir properties of carbonate successions within the Albian–Turonian of the Arabian Plate. Petroleum Geoscience, v. 17, no. 3, p. 223-241.

[26]   Hollis, C., Vahrenkamp, V., Tull, S., Mookerjee, A., Taberner, C., and Huang, Y (2010) Pore system characterisation in heterogeneous carbonates: An alternative approach to widely-used rock-typing methodologies. Marine and Petroleum Geology, v. 27, no. 4, p. 772-793.

[27]   Huber, B. T., Norris, R. D., and MacLeod, K. G (2002) Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology, v. 30, no. 2, p. 123-126.

[28]   Jordan, C.F., Connally, T.C. and Vest, H.A (1985) Middle Cretaceous carbonates of the Mishrif Formation, Fateh Field, Offshore Dubai, UAE, In: Roehl, P.O., Choquette, P.W. (Eds.), Carbonate Petroleum Reservoirs. SpringerVerlag, New York, NY, p. 427-442.

[29]   Kadkhodaie-Ilkhchi, R. K., Rezaee, R., Harami, R. M., Friis, H., and Ilkhchi, A. K (2014) An Integrated Rock Typing Approach for Unraveling the Reservoir Heterogeneity of Tight Sands in the Whicher Range Field of Perth Basin, Western Australia. Open Journal of Geology. v. 4, p. 373-385.

[30]   Kadkhodaie-Ilkhchi, R., Rezaee, R., Moussavi-Harami, R., and Kadkhodaie-Ilkhchi, A (2013) Analysis of the reservoir electrofacies in the framework of hydraulic flow units in the Whicher Range Field, Perth Basin, Western Australia. Journal of Petroleum Science and Engineering, v. 111, p. 106-120.

[31]   Kent, P.E (1979) The emergent Hormuz Salt diapirs of southern Iran. Journal of Petroleum Geology, v. 2, p. 117–144.

[32]   Kohonen T (2001) Self-organizing maps, Springer series in Information Sciences, New York, Springer-Verlag, Vol. 30, 501 p.

[33]   Li, Y., and Anderson-Sprecher, R (2006) Facies identification from well logs: A comparison of discriminant analysis and naïve Bayes classifier. Journal of Petroleum Science and Engineering, v. 53, no. 3, p. 149-157.

[34]   Lucia, F.J (2007) Carbonate Reservoir Characterization: an Integrated Approach. Springer, Berlin, New York, 336 p.

[35]   Mahdi, T. A., and A. A. M. Aqrawi (2014) Sequence stratigraphic analysis of the Mid‐Cretaceous Mishrif Formation, Southern Mesopotamian basin, Iraq. Journal of Petroleum Geology, v. 37, no. 3, p. 287-312.

[36]   Mahdi, T. A., Aqrawi, A. A., Horbury, A., Sherwani, G. H (2013) Sedimentological characterization of the mid-Cretaceous Mishrif reservoir in southern Mesopotamian Basin, Iraq. GeoArabia, v. 18, no. 1, p. 139-174.

[37]   MATLAB User's Guide (2009) Version 7.8, Statistics Toolbox, the Math Works Inc.

[38]   Mehmandosti E, Adabi M, Woods A (2013) Microfacies and geochemistry of the Middle Cretaceous Sarvak Formation in Zagros Basin, Izeh Zone, SW Iran. Sedimentary Geology, v. 293, p. 9-20.

[39]   Mehrabi H, Rahimpour-Bonab H, Hajikazemi E, Jamalian A (2015) Controls on depositional facies in Upper Cretaceous carbonate reservoirs in the Zagros area and the Persian Gulf, Iran Facies, v. 61, p.1-24.

[40]   Mehrabi, H., Rahimpour-Bonab, H (2014) Paleoclimate and tectonic controls on the depositional and diagenetic history of the Cenomanian–early Turonian carbonate reservoirs, Dezful Embayment, SW Iran. Facies, v. 60, no. 1, p.147-167.

[41]   Moore, C. H., and Wade, W.J (2013) Carbonate reservoirs: porosity, evolution & diagenesis in a sequence stratigraphic framework: Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework, Second edition, Elsevier, 369 p.

[42]   Murris, R.J (1980) Middle East: stratigraphic evolution and oil habitat. American Association of Petroleum Geologists, v. 64, no. 5, p. 597–618.

[43]   Ozkan, A., Cumella, S. P., Milliken, K. L., and Laubach, S. E (2011) Prediction of lithofacies and reservoir quality using well logs, late cretaceous Williams fork formation, Mamm Creek field, Piceance basin, Colorado. American Association of Petroleum Geologists, v. 95, no. 10, p. 1699-1723.

[44]   Rahimpour-Bonab, H., Mehrabi, H., Enayati-Bidgoli, A. H., Omidvar, M (2012) Coupled imprints of tropical climate and recurring emergence on reservoir evolution of a mid-Cretaceous carbonate ramp, Zagros Basin, southwest Iran. Cretaceous Research, v. 37, 15-34.

[45]   Rahimpour‐Bonab, H., Mehrabi, H., Navidtalab, A., Omidvar, M., Enayati‐Bidgoli, A. H., Sonei, R., Izadi‐Mazidi, E (2013) Palaeo‐exposure surfaces in Cenomanian–Santonian carbonate reservoirs in the Dezful embayment, SW Iran. Journal of Petroleum Geology, v. 36, no. 4, p. 335-362.

[46]   Razin, P., Taati, F., Van Buchem, F. S. P (2010) Sequence stratigraphy of Cenomanian–Turonian carbonate platform margins (Sarvak Formation) in the High Zagros, SW Iran: an outcrop reference model for the Arabian Plate. In: van Buchem, F. S. P., Gerdes, K. D. & Esteban, M. (Eds), Mesozoic and Cenozoic Carbonate Systems of the Mediterranean and the Middle East: Stratigraphic and Diagenetic Reference Models, Geological Society, London, Special Publications v. 329, p. 187-218.

[47]   Rezaee, M. R., Kadkhodaie-Ilkhchi, A., and Alizadeh, P. M (2007) Intelligent approaches for the synthesis of petrophysical logs. Journal of Geophysics and Engineering, v. 5, no. 1, p. 12-26.

[48]   Ronchi, P., Ortenzi, A., Borromeo, O., Claps, M., and Zempolich, W. G (2010) Depositional setting and diagenetic processes and their impact on the reservoir quality in the late Visean–Bashkirian Kashagan carbonate platform (Pre-Caspian Basin, Kazakhstan). American Association of Petroleum Geologists, v. 94, no. 9, p. 1313-1348.

[49]   Rustichelli, A., Tondi, E., Agosta, F., Di Celma, C., and Giorgioni, M (2013) Sedimentologic and diagenetic controls on pore-network characteristics of Oligocene–Miocene ramp carbonates (Majella Mountain, central Italy). American Association of Petroleum Geologists, v. 97, no. 3, p. 487-524.

[50]   Sadooni, F.N., Aqrawi, A.A.M (2000) Cretaceous sequence stratigraphy and petroleum potential of the Mesopotamian Basin, Iraq. In: Scott, B., Alsharhan, A.S. (Eds.), Middle East Models of Jurassic/Cretaceous Carbonate Systems. SEPM Special Publication 69, p. 315-334.

[51]   Saggaf, M. M., and Nebrija, L (2003) A fuzzy logic approach for the estimation of facies from wire-line logs. American Association of Petroleum Geologists, v. 87, no. 7, p. 1223-1240.

[52]   Sattarzadeh Y, Cosgrove J, Vita-Finzi C (1999) The interplay of faulting and folding during the evolution of the Zagros deformation belt, In: Cosgrove, J. W. & Ameen, M. S. (Eds.), Forced Folds and Fractures, Geological Society, London, Special Publications 169, p.187-196.

[53]   Sepehr, M., Cosgrove, J.W (2005) Role of the Kazerun fault zone in the formation and deformation of the Zagros fold thrust belt, Iran. Tectonics 24. p. 1-13.

[54]   Serra, O. T., and Abbott, H. T (1982) The contribution of logging data to sedimentology and stratigraphy. Society of Petroleum Engineers Journal, v. 22, no. 01, p. 117-131.

[55]   Setudehnia, A (1978) The Mesozoic sequence in southwest Iran and adjacent areas. Journal of Petroleum Geology, v. 1, no. 1, p. 3–42.

[56]   Sharland, P.R., Archer, R., Casey, D.M., Davies, R.B., Hall, S.H., Heyward, A.P., Horbury, A.D., Simmons, M.D (2001) Arabian plate sequence stratigraphy. GeoArabia, Special Publication 2, 371 p.

[57]   Sparks, A. G., and Rankey, E. C (2013) Relations between geomorphic form and sedimentologic-stratigraphic variability: Holocene ooid sand shoal, Lily Bank, Bahamas. American Association of Petroleum Geologists, v. 97, no. 1, p. 61-85.

[58]   Taghavi, A.A., Mork, A., Emadi, M.A (2006) Sequence stratigraphically controlled diagenesis governs reservoir quality in the carbonate Dehluran field, SW Iran. Petroleum Geoscience, v. 12, no 2, p. 115-126.

[59]   Tucker, M.E., Wright, V.P (1990) Carbonate Sedimentology. Blackwell Scientific Publications, Oxford, UK, 482 p.

[60]   Vincent, B., van Buchem, F. S., Bulot, L. G., Jalali, M., Swennen, R., Hosseini, A. S., Baghbani, D (2015) Depositional sequences, diagenesis and structural control of the Albian to Turonian carbonate platform systems in coastal Fars (SW Iran). Marine and Petroleum Geology, v. 63, p. 46-67.

[61]   Wilson, J.L (1975) Carbonate Facies in Geologic History. Springer-Verlag, New York, 471 p.

[62]   Wolf, M., & Pelissier-Combescure, J (1982) Faciolog-automatic electrofacies determination. In SPWLA 23rd Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts. p. 1-22.

[63]   Ziegler, M (2001) Late Permian to Holocene paleofacies evolution of the Arabian plate and its hydrocarbon occurrences. GeoArabia 6, p. 445-504.

Zou, C. N., Tao, S. Z., Hui, Z. H. O. U., Zhang, X. X., He, D. B., Zhou, C. M., ... & Ping, L. U. O (2008) Genesis, classification, and evaluation method of diagenetic facies. Petroleum Exploration and Development, v. 35, p. 526-540.