خاستگاه و موقعیت تکتونیکی سازند کشف‌رود در برش ناویا (غرب بجنورد) بر مبنای مطالعات پتروگرافی و ژئو‌شیمی ماسه‌سنگ‌ها

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد

2 گروه زمین‌شناسی، دانشکده علوم، دانشگاه شهید باهنر کرمان

چکیده

سارند کشف­رود در برش ناویا (59 کیلومتری غرب بجنورد) با ضخامت 749 متر از رسوبات سیلیسی آواری تشکیل شده است. در این مطالعه، بر اساس گونه‌های نانوفسیلی Watznaueria britannica و ­Cyclagelosphaera  margerelii  موجود در  350 و 710 متری بالای قاعده، سن این سازند می­تواند باژوسین-؟ باتونین باشد. مطالعات میکروسکوپی ماسه­سنگ­ها نشان می­دهد که کوارتز فراوان­ترین نوع دانه و سپس خرده­سنگ و فلدسپات از مهم­ترین ذرات تشکیل­دهنده بوده و شامل سه پتروفاسیس ساب چرت­آرنایت،  چرت­آرنایت، فیلارنایت و فلدسپاتیک چرت­آرنایت هستند. رسم نتایج دانه شماری  ماسه­سنگ­ها در نمودارهای QmFLt و QtFL نشان می­دهد که رسوبات سازند کشف رود در محدوده کوهزایی با چرخه مجدد قرار می­گیرند. افزون بر این بررسی نمودارهای ژئوشیمیایی برای تعیین ماهیت سنگ منشا، نشان می­دهد که ماسه­سنگ­ها از یک سنگ  منشا احتمالی آذرین حد واسط و رسوبی مشتق شده­اند. میانگین اندیس هوازدگی شیمیایی (CIA)، میانگین درجه دگرسانی پلاژیوکلازها (PIA)، اندیس ICV (برای تعیین نوع سنگ منشأهای بالغ و غیربالغ) و نیز­ Si2O در برابر Al2O3 + K2O + Na2O بیانگر آب و هوای گرم و نیمه مرطوب است. استفاده از نمودار تابعی و دیاگرام سه­تایی (Na2O+ K2O), (TiO2+ MgO+ Fe2O3), (SiO2/20), رسوب­گذاری ماسه­سنگ­های این سازند را در محیط­های حاشیه­ای قاره­ ای غیر فعال تائید می­کند.

کلیدواژه‌ها


عنوان مقاله [English]

Provenance and tectonic setting of Kashafrud Formation in the Navia section (Western Bojnourd), based on petrography and geochemistry studies of sandstones

نویسندگان [English]

  • Neda Sarbaz 1
  • Asadollah Mahboubi 1
  • Reza Moussavi-Harami Moussavi-Harami 1
  • Mohammad Khanehbad 1
  • Azam Mahanipour 2
1 Depatment of Geology, Faculty of Science, Ferdowsi University‌ of Mashhad
2 Department of Geology, Faculty of Science, Shahid Bahonar University of Kerman
چکیده [English]

Kashafrud Formation in the Navia section (59 km west of Bojnourd) with 749 meter thickness is composed of silici-clastic sediments. In this study, based on nanofossils genus Watznaueria  britannica and ­Cyclagelosphaera  margerelii  that were recorded at 350 and 710 meter  above the base of formation revealed that the age of this interval can be Bajocian-? Bathonian. The fragments and feldspar are the most important constituents. Three sandstone petrofacies, including subchertarenite, chertarenite, phylarenite and feldspatic chertarenite, are identified. Modal analysis of sandstones, plotted on QmFLt and QtFL diagrams, show that the sediments of Kashafrud Formation are located on the recycle orogeny. However, geochemical studies for identification of source rocks revealed these sediments may have been derived from intermediate igneous and sedimentary rocks. CIA Index (chemical weathering), high average Plagioclase index of alteration (PIA), ICV (index for determining the type of mature and immature source rocks) as well as SiO2 versus Al2O3 + K2O + Na2O show a warm and semi humid climatic conditions. Using ternary diagram (Na2O+ K2O), (TiO2+ MgO+ Fe2O3), (SiO2/20) is also proved that these sandstones may have been deposited on a passive continental margin setting.

کلیدواژه‌ها [English]

  • Petrography
  • Geochemistry
  • Kashafrud Formation
  • Bajocian-? Bathonian
  • West Bojnourd and Kopet Dagh

[1] پورسلطانی، م. ر. موسوی حرمی، ر.، لاسمی، ی (1386) تفسیر محیط رسوبی سازند کشف­رود (باژوسین بالایی- باتونین زیرین)، بر مبنای ایکنوفسیل­ها د ر شمال خاور ایران، فصلنامه علوم زمین، شماره 65، صفحات 170- 185.

[2] رئوفیان (1393) بررسی ردیف­های رسوبی ژوراسیک میانی تا بالائی در حوضه­ی ساختاری- رسوبی بینالود بر مبنای مطالعات چینه­شناسی، فسیل­شناسی (زیای آمونیتی) و محیط رسوبی، پایان­نامه دکتری دانشگاه فردوسی مشهد، 419 صفحه.

[3] سرباز ، ن.،  محبوبی،ا .، موسوی حرمی، ر.، خانه باد، م (1395) محیط رسوبی و چینه­نگاری سکانسی نهشته­های ژوراسیک میانی: مطالعه موردی از برش ناویا در غرب بجنورد، غرب کپه­داغ، پژوهـش­های چیـنه­نگاری و رسوب­شناسی، شماره 65، صفحات 29-46.

[4] سرباز، ن. محبوبی­، ا.، موسوی حرمی، ر.، خانه باد، م.،  زیر چاپ، برخاستگاه شیل­های سازند کشف­رود در برش ناویا (غرب بحنورد) بر اساس داده­های ژئوشیمیایی، فصل­نامه علوم زمین.

[5] سهیلی، م.، سهندی، م (1375) نقشه­ی زمین­شناسی سنخواست به مقیاس 1:100000،  سازمان زمین­شناسی و اکتشافات معدنی کشور.

[6] Adel, I.M., Akarish, B., Amr M. El-Gohary, N )2008( Petrography and geochemistry of  Lower Paleozoic sandstones, East Sinai, Egypt: Implications for provenance and tectonic setting, Journal of African Earth Sciences, 52: 43-54.

[7] Alvarez, N. M., Roser, B.P (2007) Geochemistry of black shales from the Lower Cretaceous Paja  Formation, Eastern Cordillera, Colombia: Source weathering, provenance, and tectonic setting, Journal of South American Earth Sciences, 23: 271–289.

[8] ­Basu, A., Young, S., Suttner, L., James, W., Mack, G.H (1975) Re-evalution of the use of undulatory extinction and crystallinity in detrital quartz for provenance interpretation, Journal of Sedimentary Petrology, 45: 873-882.

[9] Batumike, I.L., Cailteux, H., Kumpunzu, A.B (200­6) Lithostratigraply, basin devolopoment, base metal deposits and regeional conelathions of the Neoprotrozic Ngoba and Kondelvngu rock Successions, Central Atican. Gondwana Research, 11:432-447.

[10] Bhatia, M.R (1983) Plate tectonics and geochemical composition of sandstones, Geology 91: 611–626.

[11] Dickinson, W.R., Suczek, D.R (1979) Plate tectonics and sandstone compositions. The American Association of Petroleum Geologist Bulletin, 63: 2164-2182.

[12] Fedo, C.M., Young, G.M., Nest, H.W., Hanchar, J.M (1997) Potassicand sodic metasomatism in the Southern Province   of the Canadian Shield: evidence from the Paleoproterozoic Serpent Formation, Huronian Supergroup Canada, Precambrian Research, 84: 17–36.

[13] Folk, E (1980) Petrography of Sedimentary Rocks, Hemphill Publishing Company, 182p.

[14] Gazzi, P (1966) Le arenarie del flysh sopracretaceo dell Appennino modenese; Correlazioni con il flysh di Monghidoro,Mineralogica Petrografica Acta 12: 69-97.

[15] Hayeshi, K., Fujisawa, H., Holland, H.D., Ohmoto, H (1997) Geochemistry of 1.9 sedimentary rocks from northeastern   Labrador, Canada, Geochimica et Cosmochimica Acta, 61: 4115–4137.

[16] Jafarzadeh, M., Moussavi-Harami, R., Amini, A., Mahboubi, A., Farzaneh, F (2014) Geochemical constrants on the  provenance of Oligocene- Miocene siliciclast deposits (Zivah Formation) of NW Iran: implications for the tectonic  evolution of the Caucasus, Arabian Journal of Geosciences, 7: 4245- 2463.

[17] Jin, Z., Li, F., Cao, J., Wang, S. & Yu, J (2006)  Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: Implications for provenance, sedimentary sorting and catchment weathering, Geomorphology, 80: 147-163.

[18] Khanehbad, M., Moussavi_Harami, R., Mahboubi, A., Nadjafi, A (2012) Geochemistry of Carboniferous Shales of the Sardar Formation, East Central Iran: Implication for Provenance, Paleoclimate and Paleo-oxygenation conditions at a passive continental margin, Geochemistry International, 50: 777-790.

[19] Kroonenberg, S.B (1994) Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from ­different tectonic and climatic environments. Proceedings of the 29th International Geological Congress, Part A 69-81.

[20] Lee,Y.L (2002) Provenance Derived from the Geochemistry of Late Paleozoic–Early Mesozoic Mudrocks of the Pyeongan Supergroup, Korea, Sedimentary Geology, 149: 219–235.

[21] ­ Madani, M (1977) A study of the sedimentology, stratigraphy and regional geology of the Jurassic rocks of eastern Kopet Dagh (NE Iran). Unpublished Ph.D. thesis, Royal School of Mines, Imperial College, London, 246 p.

[22] Moosavirad, A. M., Janardhana, M. R., Sethumadhav, M.S., Moghadam, M. R., Shankara, M (2011) Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: Provenance, source weathering and tectonic setting. Chemie der Erde- Geochemistry, 71: 279–288.

[23] Morton, A.C., Hallsworth, C (2007) Stability of detrital heavy minerals during burial diagenesis. Developments in Sedimentology, 58: 215–245.

[24] Nesbitt, H. W., & Young, G. M (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, p.715-717.

[25] Nowrouzi, N., Moussavi-Harami, R., Mahboubi, A., Mahmudy Gharaie, M. H., Ghaemi, F (2013) Petrography and  geochemistry of Silurian Niur sandstones, Derenjal Mountains, East Central Iran: implications for tectonic setting, provenance and weathering, Arabian Journal of Geosciences, 7: 2793-2813.

[26] Paikaray, S., Banerjee, S., Mukherji, S (2008) Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance, tectonics and geodynamic significance of the Upper Bajocian-Bathonian Kashafrud Formation, NE Iran. Geological Society, London, Special Publication, 312: 205- 218.

[27] Poursoltani, M.R., Moussavi-Harami, R., Gibling, M.R (2007)  Jurassic deep-water fans in the Neo-Tethys Ocean: The Kashafrud Formation of  the Kopet-Dagh Basin, Iran, Sedimentary Geology, 198: 53–74.

[28] Potter, P. E., Maynard, J. B. Depetris, P. J (2005) Mud and Mudstones, Springer-Verlag Berlin, 297 p.

[29] Roser, B.P., Korsch, R.J (1988) Provenance signatures of sandstone–mudstone suites determined using discriminant function analysis of major-element data, Chemical Geology, 67: 119–139.

[30] Salehi, M. A., Moussavi-Harami, R., Mahboubi, A., Wilmsen, M., Heubeck, Ch (2014) Tectonic and palaeogeographic implications of compositionalvariations within the siliciclastic Ab-Haji Formation (Lower Jurassic,east central Iran), Neues Jahrbuch für Geologie und Paläontologie – Abhandlungenb,  271: 21-48.

[31] Schieber, J (1992) ­A combined petrographical-geochemical provenance study of the Newland formation, Mid- Proterozoic of Montana, Geological Magazine, 129: 223–237.

[32] Schneider, S., Hornung, J., Hiderer, M.,  Garzanti, E (2016) Petrography and geochemistry of modern river sediments in an equatorial environment (Rwenzori Mountains and Albertine rift, Uganda) Implications for weathering and provenance, Sedimentary Geology, 336: 106-119.

[33] Suttner, L.J., Dutta, P.K (1986)­ Alluvial sandstone composition and Palaeoclimate: framework mineralogy, Journal of Sedimentary Petrology, 56: 329-345.

[34] Taheri, J., Fursich, F.T., Wilmsen, M (2009) Stratigraphy, depositional environments and environments and geodynamic significance of the Upper Bajocian-Bathonian Kashafrud Formation, NE Iran. Geological Society, London, Special Publication 312, 205-218.

[35] Taylor, S.R., McLennan, S.M (1985) The Continental Crust: its Composition and Evolution,Blackwell, Oxford 312p.

[36] Thierry, J (2000) Middle Callovian (157–155 Ma). In: Dercourt J, Gaetani M, Vrielynck B, Barrier Biju- Duval B,  Brunet MF, Cadet JP, Crasquin S, Sandulescu M (eds) Atlas Peri-Tethys, Palaeogeographical Maps. CCGM/CGMW, Paris, 1–97.

[37] Wang, F., Liu, Cg., Gao, X., Zhang, H (2014) Provenance and paleogeography of the Late Cretaceous Mengyejing Formation, Simao Basin, southeastern Tibetan Plateau:Whole-rock geochemistry, U–Pb geochronology, and Hf isotopic  constraints, Sedimentary Geology, 304: 44-58.

[38] Zand-Moghadam, H., Moussavi-Harami, R., Mahboubi, A., Bavi, H (2013) Comparison of tidalites in silicicastic, carbonate, and mixed siicicastic-carbonate System: examples from Cambrian and Devonian deposits of  East-Central Iran, ISRN Geology: 1-21.

[39] Zaid, S.M., Gahtani, F.A (2015) Provenance, diagenesis, tectonic setting, and geochemistry of Hawkesbury Sandstone (Middle Triassic), southern Sydney Basin, Australia, Earth Sciences, 24: 72-98.

[40] Zhang, X., Pease,V., Omma, O., Benedictus.A (2015) Provenance of Late Carboniferous to Jurassic sandstones for southernTaimyr, Arctic Russia: A comparison of heavy mineral analysis by optical and QEMSCAN methods, Sedimentary Geology, 329: 166–176.