نقش نشانگر های رسوب شناختی و ژئوشیمیایی در شناسایی شرایط اکسیداسیون-احیا در بخش جنوبی حوضه خزر جنوبی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مدیریت زمین‌شناسی دریایی، سازمان زمین‌شناسی و اکتشافات معدنی کشور، تهران

2 گروه زمین‌شناسی، دانشگاه بوعلی‌سینا، همدان

3 شرکت مهندسین مشاور ژئوتکنیک زمین‌کاوان جنوب، تهران

چکیده

یک روش تحلیلی شاخص (نشانگر­های ژئوشیمیایی (کربن آلی کل و میزان فلزات کمیاب حـساس به شرایـط اکسـیداسیون-احیا) و نشان­گرهای رسوب­شناختی) برای شناخت شرایط اکسیداسیون-احیا در بخش جنوبی حوضه خزر جنوبی مورد استفاده قرار گرفته است. بر پایه بررسی­های رسوب­شناختی، رسوبات گل­پشتیبان در بخش­های دور از منشا سکوی قاره فراوان هستند، درحالی­که تناوبی از دبریت­ها و رسوبات پلاژیک-همی­پلاژیک، بافت­های مهم در شیب و بخش­های نزدیک به منشا دشت حوضه هستند. چندین پارامتر (مانند اکسیژن محلول زیرین، کربن آلی کل، محتوی زیستی، پلت­های مدفوعی و فلزات کمیاب) پیشنهاد می­دهند که این رسوبات در محیط­هایی با شرایط متفاوت اکسیداسیون-احیا نهشته شده­اند: 1- محیط­های سکو و شیب قاره (رسوبات با شرایط اکسیدان) و 2- محیط­های دشت حوضه و حوضه­های درون­شیبی (رسوبات با شرایط کم اکسیژن). یافته­های حاصل از این پژوهش نشان می­دهد که رسوبات دشت حوضه و حوضه­های درون­شیبی در زون کمینه اکسیژن بر جای گذاشته شده­اند. رسوبات کم اکسیژن دارای مقادیر بیش­تری از فلزات کمیاب (وانادیم، روی، کروم، مس و نیکل)، کربن آلی کل، پلوئید­های گلی و شامل مواد آلی نوع II هستند، درحالی­که رسوبات اکسیدان مقادیر بیش­تری از موجودات ساکن در بین رسوبات (مانند استراکودا و گاستروپودا)، پلت­های مدفوعی و مواد آلی نوع III و مخلوط II/III را دارند. مواد آلی نوع III نشان­دهنده آورد مواد آلی با منشا قاره­ای (خشکی­زی) به رسوبات سکو و شیب قاره می­باشد. میزان حفظ­شدگی ضعیف مواد آلی و زیست­آشفتگی از تجمع مواد آلی در رسوبات اکسیدان پیشگیری می­کند. این پژوهش نـشان مـی­دهـد که مـیزان حفظ­شدگی مواد آلی در بخش جنوبی حوضه خزر جنوبی بوسیله چندین پارامتر مانند اکسیژن محلول زیرین، نوع مواد آلی و محتوی زیستی کنترل می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

The role of sedimentological and geochemical indicators in the recognition of redox conditions in the southern part of the South Caspian Basin

نویسندگان [English]

  • reza behbahani 1
  • gh hosseinyar 1
  • A. Karimkhani 1
  • H. Mohseni 2
  • Z. Atashmard 3
1 Dept., of marine geology, Geological survey of Iran, Tehran
2 Dept., of geology, Bu-Ali sina university, Hamadan, Iran
3 Zamin Kavan Geotechnical Consulting Engineers, Tehran, Iran
چکیده [English]

Sediment constituents, total organic carbon contents, redox-sensitive trace-metals concentrations, and organic matter (OM) types have been analyzed on fifteen sediment cores (73cm-165cm long) taken from the southern part of the South Caspian Basin (SPSCB). 257 samples for sedimentological studies (particles size analysis, mineralogy and biota contents) and 120 samples for organic-inorganic geochemistry studies (TOC, S2 and RSTM concentrations) were analyzed. Sediments on the distal parts of shelf are mud dominated, while slope and proximal parts of the basin plain comprise interbedded debrite, and pelagic-hemipelagic sediments. Several factors (e.g. bottom dissolved oxygen (BDO), TOC, biota content, faecal pellets, and RSTM) suggest that these sediments were deposited under markedly different redox conditions, namely: (1) Shelf and slope settings (oxic sediments), and (2) intraslope basins and basin plain settings (dysoxic sediments). Observations suggest that basin plain and intraslope basins sediments were deposited under oxygen-depleted (oxygen minimum zone) conditions. The dysoxic sediments are enriched in RSTM (V, Zn, Cr, Cu, Ni), with high TOC values, with mud peloids, and contain type II OM, while the sediments of the oxic sediments are enriched in infaunal organisms, faecal pellets, and contain types III and mixture II/III OM.

کلیدواژه‌ها [English]

  • Dysoxic sediments
  • Oxygen minimum zone
  • Sediment cores
  • Redox-sensitive trace-metals
  • South Caspian Basin

بهبـهانی، ر.، کـریـم­خـانـی، ا.، حـسـین­یار، غ (1395) رسوب­شناسی، محیط­های رسوبی و ژئوشیمی آلی در بخش جنوبی حوضه خزر جنوبی، دو فصل­نامه رسوب­شناسی کاربردی، دوره 4، شماره 7، ص49-65.

Abdullayev, N.A., Kadirov, F., Gulyev, I.S (2015) Subsidence history and basin-fill evolution in the South Caspian Basin from geophysical mapping, flexural backstripping, forward lithospheric modelling. In: Brunet, M. F., McCann,T., Sobel, E. R. (EDS.), Geological evolution of central Asia Basin and the Western Tien Shan Range. Geological Society, London, Special Publication 427, 1-22.

Algeo, T.J., and  Maynard, B.J (2004) Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, v. 206, 289-318.

Al-Sharhan, A.S., Kendall, C.G. St. C (2003) Holocene coastal carbonates and evaporates of the southern Persian Gulf and their ancient analogues. Earth- Science  Reviews, v. 61, 191-243.

Baudin, F., Disnar, J.R., Martine, P., Dennielou, B (2010) Distribution of the organic matter in the channel-Levees systems of the Congo mud-rich deep sea fan (West Africa): implication fordeep offshore petroleum source rocks and global carbon cycle. Marine and Petroleum Geology, v. 27, 995-1010.

Behbahani, R., Hosseinyar, G., Lak, R (2015) The controlling  parameters on organic matter preservation within the bottom sediments of the northern part of the Persian Gulf. N. Jb. Geol. Palaont. Abh., v. 276, 267-283.

Bohacs, K.M., Carroll, A.R., Neal, J.E., Mankiewicz, P.J (2000) Lake basin type, source potential, and hydrocarbon character: an integrated sequence-stratigraphic-geochemical framework. In: Gierlowski-Kordesch, E.H., Kelts, K.R. (Eds.), Lake basins through space and time, Tulsa (AAPG), 3-34.

Brunet, M.F.; Korotaev, O.; Ershov, A.V.; Nikishin, A.M (2003) The South Caspian Basin: a review of its evolution from subsidence modeling. Sedimentary geology, v. 156, 119-148.

Calvert, S.E., Pedersen, T.F (1992) Organic carbon accumulation and preservation in marine sediments: how important is anoxia?. In: Whelan, J.K., Farrington, J.W. (Eds.), Organic matter productivity, accumulation, and preservation in recent and ancient sediments, New York (Columbia University Press), 231-263.

Chester, R., Jickells, T (2012) Marine geochemistry, 3rd edition. Chichester (Wiley-Blackwell), 409 p.

Delvin, W.J., Cogswell, J.M., Gaskins, G.M., Isaksen, G.H., Pitcher, D.M., Puls, D.P., Stanley, K.O., Wall, G.R.T (1999) South Caspian Basin; Young, cool, and full of promise. GSA Today, v.9, 1-9.

Demaison, G.J., Moore, G.T (1980) Anoxic environments and oil source bed genesis. AAPG Bulletin, v. 64, 1179-1209.

Diaz, R.J., Rosenberg, R (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceano. Mari. Bio. Ann. Rev., v. 33, 245-303.

Eglinton, T.I., Repeta, D.J (2003) Organic matter in the contemporary ocean. In: Elderfield, H., Holland, H.D., Turekian, K.K. (Eds.), Treatise on geochemistry. Oxford (Elsevier-Pergamon), 145-180.

Flugel, E (2004) Microfacies of carbonate rocks: analysis, interpretation and application. Berlin (Springer),  976 p.

Folk, R.L (1974) Petrology of sedimentary rocks. Texas (Hemphill publishing company) 182p.

Fraser, G. S (1989) Clastic depositional sequences-processes of evolution and principles of interpretation. Prentice Hall, New Jersey, 458 p.

Goddard, D.A., Mancini, E.A., Talukar, S.C. & Horn, M (1997) Bossier – Hanesvill shale, North Louisian Salt basin. – Lousiana State University, Baton Rouge, Louisiana, center for energy, PDF file, http:// www. Api. Ning. Com/ files, 46.  Accessed 2 Jun 1997.

Gutierrez, D.,Gallardo, V. A., Mayor, S., Neira, C., Vasquez, C., Sellanes, J., Rivas, M., Soto, A., Carrasco, F., Baltzar, M (2000) Effects of dissolved oxygen and fresh organic matter on the bioturbation potential macrofauna in sublittoral sediments off Central Chile during the 1997/1998 El Nino. Marine Ecology Progress Series, v.202, 81-99.

Harris, N.B (2005) The deposition of organic carbon rich sediments: models, mechanisms and  consequences-   introduction. In: Harris, N.B. (Eds.), The deposition of organic carbon rich sediments: models, mechanisms, and consequences. SP. Pub. No. 82 SEPM, Tulsa, pp. 1-5.

Harris, N.B., Freeman, K.H., Pancost, R.D., Mitchell, G.D., White, T.S., Bate, R.H (2005) Patterns of organic carbon enrichment in a lacustrine source rock in relation to paleo-lake level, Congo Basin, West Africa. In: Harris, N.B. (Eds.), The deposition of organic carbon rich sediments: models, mechanisms, and consequences. SP. Pub. No. 82 SEPM, Tulsa, pp. 103-123.

Hosseininejad, S., Pedersen, P.K., Spencer, R.J., Nicolas, M.P. B (2012) Mineralogy, Geochemistry and facies description of a potential Cretaceous shale gas play in western Manitoba. In: report of activities 2012, Manitoba innovation, energy and mines, Manitoba Geological Survey, 151-159.

Jones, B., and Manning,, D.A.C (1994) Comparision of geochemical indicators used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, v. 111, 111-129.

Kalani, M., Khodabakhsh, S., Amirbehboodi, C (2008) Seismic expression and inferred depositional environments of Plio-Pleistocene sedimentary sequences in the southwestern Caspian Sea. Geo-marine Letter, v. 28, 31-41.

Katz, B.J (2005) Controlling factors on source rock development- Areview of productivity, preservation, and sedimentation rate. In: Harris, N.B. (Eds.), The deposition of organic carbon rich sediments: models, mechanisms, and consequences. Special Publication No. 82 SEPM, Tulsa, 7-16.

Kazanci, N., Gulbabazadeh, T (2013) Sefidrud delta and Quaternary evolution of the southern Caspian lowland,Iran. Marine Petroleum Geology, v. 44, 120-139.
Korshenko, A., Gasim Gul, A (2005) Pollution of the Caspian Sea. In: Hutzinger, O., (Eds.), the handbook of environmental chemistry, v.5, water pollution, part p, 109-142.
Langford, F.F. & Blanc-Valleron, M.M (1990) Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. – American Association of Petroleum Geologists Bulletin, v. 74, 799-804.
Leroy, S.A.G., Tudryn, A., Chalie, F., Merino, L.L., Gasse, F (2013) From the Allerd to the mid-Holocene: palynological evidence from the south basin of the Caspian Sea. Quaternary Science Reviews, v.78, 77-97.
Levin, L.A., Hugget, C., Wishner, K (1991) Control of deep sea benthic community structure by oxygen and organic matter gradients in the eastern Pacific Ocean. Journal of Marine Research, v. 49, 763-800.
Lewis, C.F.M., Mayer, L.A., Mukhopadhyay, P.K., Kruge, M.A., Coakley, J. P (2000) Multi beam sonar backscatter lineaments and anthropogenic organic components in lacustrine silty clay, evidence of shipping in western lake Ontario. International Journal of coal Geology, v. 43, 307-324.
Marchand, C., Lallier-Verges, E., Baltzer, F (2003) The composition of sedimentary organic matter in relation to the dynamic features of a mangrov Fringed coast in French Guiana. Estuarine, Coastal and shelf Science, v. 56, 119-130.
Meyers, P.A (2003) Applications of organic geochemistry to paleolimnological reconstruction: a summary of examples from the Laurentian Great Lakes. – Organic Geochemistry, v. 34: 261- 289.
Middleburg, J.J., Levin, L.A (2009) Coastal hypoxia and sediment biogeochemistry. Biogeosciencs, v. 6, 1273-1293.
Morse, J.W., Luther, G.W. I.I.I. (1999) Chemical influences on trace metal-sulfide interaction in anoxic sediments. Geochemica Cosmochemica Acta, v. 63, 3373-3378.
Nazari, H., Omrani, J., Shahidi, A., Salamati, R., Moosavi, A (2004) Geological map of Bandar-e-Anzali quandrangle. Geological Survey of Iran (GSI). Geological quadrangle map D3-5864, scale 1:100000 .
Nichols, G (2009) Sedimentology and stratigraphy, 2nd edition, Chichester, UK; Blackwell Science, 432 p.
Nittrouer, C.A., Sternberg, W (1981) The formation of sedimentary strata in an allochthonous shelf environment: the Washington continental shelf. Marine Geology, v. 42, 201-232.
Pailler, D., Bard, E., Rostek, F., Zheng, Y., Mortlock, R., Van Geen, A (2002) Burial of redox-sensitive metals and organic matter in the equatorial Indian Ocean linked to precession. Geochemica Cosmochemica Acta, v. 66, 849-865.
Paulmier, A., Ruiz-Pine, D (2009) Oxygen minimum zones (OMZs) in the modern ocean. Progressive Oceanography, v. 80, 113-128.
Piip, V.B., Rodnikov, A.G., Buvaev, N.A (2012) The deep structure of the lithosphere along the Caucasus-South Caspian Basin-Apsheron Threshold Middle-Caspian Basin-Turan plate seismic profile. Moscow University Geology Bulletin, v. 67, 125-132.
Pratima, M., Kessarkar, L., Purchandra, R (2007) Organic carbon in sediments of the southwestern margin of India: influence of productivity and Monsoon variability during the late Quaternary. Journal Geological Society of India, v. 69, 42-52.
Sanei, H., Goodarzi, F (2006) Relationship between organic matter and mercury in recent lake sediment. The physical- geochemical aspects, Applied Geochemistry, v. 21, 1900-1912.
Sifeddine, A., Gutierrez, L., Ortlieb, L., Boucher, H., Velazco, F., Field, D., Vargas, G., Boussafir, M (2008) Laminated sediments from the central Peruvian continental slope: A 500 year record of upwelling system produvtivity, terrestrial run off and redox conditions. Progress in Oceanography, v. 79, 190- 197.
Stein, R (1991) Accumulation of organic carbon in marine sediment. Berlin (Springer), 217 p.
Tuzhilkin, V.S., and Kosarev, A.N (2005) Thermohaline structure and general circulation of the Caspian Sea waters. In: Hutzinger, O., (Eds.), the handbook of environmental chemistry, v.5, water pollution, part p, 33-57.
Tuzhilkin, V.S., Katunin, D.N., Nalbandov, Y.R (2005) Natural chemistry of Caspian Sea waters. In: Hutzinger, O., (Eds.), the handbook of environmental chemistry, v.5, water pollution, part p, 83-108.
Wignall, P.B (1994) Black shales. Oxford, Clarendon Press, 127 p.


دوره 5، شماره 9
بهار و تابستان 1396
صفحه 1-20
  • فایل‌های تکمیلی/اضافی
  • N1A.pdf
  • تاریخ دریافت: 25 بهمن 1395
  • تاریخ بازنگری: 09 فروردین 1396
  • تاریخ پذیرش: 12 اردیبهشت 1396