تأثیر ترکیب سنگ های سیلیسی آواری و کربناته بر تاریخچه پس از رسوب گذاری: مطالعه موردی از سازند نایبند و نهشته های کرتاسه پایینی، شمال شرق اصفهان

نویسندگان

گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه اصفهان

چکیده

این پژوهش به بررسی فرآیندهای دیاژنزی توالی آواری و کربناته تریاس بالایی و کرتاسه پایینی در برش کوه بجاره شمال شرق اصفهان می­پردازد. روش بررسی در این پژوهش شامل مطالعات صحرایی و نمونه­برداری سیستماتیک و سپس پتروگرافی برش نازک سنگ­های آواری و کربناته به وسیله میکروسکوپ پلاریزان و کاتدولومینسانس بوده است. توالی مورد مطالعه  دارای 167 متر ضخامت بوده و شامل قسمت­های بالایی عضو قدیر سازند نایبند و توالی آواری (واحد K1) و کربناته (واحد K2) قاعده کرتاسه پایینی می­باشد. مطالعات دیاژنزی در رخساره­های آواری منجر به شناسایی فرآیندهای آشفتگی زیستی، دگرسانی فلدسپات، نوع تماس دانه­ها، انواع سیمان شامل کلسیتی، اکسید آهن و کانی رسی (مربوط به مرحله ائوژنز) و تراکم شیمیایی، انواع سیمان دولومیتی، رشد هم­محور کوارتز و کانی رسی (مربوط به مرحله مزوژنز) گردیده است. سیمان اکسید آهن و کانی رسی، شکستگی و پرشدگی رگه توسط سیمان دولومیتی مربوط به مرحله تلوژنز می­باشد. مطالعات انجام شده بیانگر تأثیر ترکیب ماسه­سنگ­ها بر روند و محصولات دیاژنز است. از جمله تأثیرات ترکیب سیلیسی آواری­ها بر روی فرآیندهای دِیاژنزی فراوانی بالای سیمان کانی رسی هم­چنین افزایش دگرسانی فلدسپات در پتروفاسیس­های ماسه­سنگی غنی از فلدسپات بخش قدیر مشاهده می­گردد. بررسی­ها هم­چنین بیانگر فراوانی بالای فرآیند سیمان رشد هم­محور سیلیسی در پتروفاسیس­های ماسه­سنگی غنی از کوارتز در واحد K1 می­باشد. در بررسی دیاژنز سنگ­های کربناته واحد K2 نیز فرآیندهای میکریتی شدن و آشفتگی زیستی، سیمان فیبری هم ضخامت در مرحله دیاژنز دریایی و سیمان آویزه­ای و اکسید آهن مربوط به مرحله دیاژنز هواده شناسایی شده است. سیمان آویزه­ای و کلسیت دروزی و دندانه­ای، سیمان اکسید آهن، مربوط به مرحله دیاژنز اشباع از آب مرحله متئوریک می­باشد. از جمله فرآیندهای دیاژنز مرحله دفنی انواع سیمان تیغه­ای-منشوری، دولومیتی، بلوکی، رشد هم­محور و فرآیندهای فشردگی و شکستگی می­باشد. سیمان­ محیط­های مختلف از لومینسانس تیره، قرمز تا بدون لومینسانس هستند که منجر به تفکیک فازهای مختلف سیمانی در نهشته­های کربناته گردیده است. در طی بالاآمدگی نیز سیمان اکسید آهن و شکستگی و پر شدن آن رخ داده است. بررسی کلیه فرآیندهای دیاژنزی رخساره­های آواری و کربناته بیانگر انواع مراحل مختلف دیاژنز اولیه، مراحل میانی دیاژنز دفنی، تدفین عمیق و بالا آمدگی و وقوع آن­ها تحت تأثیر ترکیب نهشته­ها می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The impact of siliciclastic and carbonate composition on the post depositional history: A case study from the Nayband Formation and the Lower Cretaceous sequences, North East Isfahan

نویسندگان [English]

  • Zahra Mazroei Sebdani
  • Mohamad Ali Salehi
  • Hamid Reza Pakzad
  • Ali Bahrami
چکیده [English]

This investigation focues on the diagenesis events of the siliciclastic and carbonate rocks of the Upper Triassic and Lower Cretaceous strata in Kuh-e-Bejareh section of northeast Isfahan. The method of study include fieldwork, systematic sampling and thin section petrography of the siliciclastic and carbonate specimens with polarized and cathodoluminescence microscopes. The studied intervals with 167 meter thick includes the upper Qadir Member of Nayband Formation and the siliciclastic (K1) and carbonate rocks (K2) of Lower Cretaceous sequence. The diagenetic studies of siliciclastic petrofacies led to recognition of the bioturbation, alteration of feldspar, type of grain contacts, different cement types include calcite, iron oxide and clay mineral (related to eogenetic stage), chemical compaction, dolomite, overgrowth silica and clay cements (related to the mesogenetic stage). Iron oxide cement and clay minerals, fracturing and vein filling by dolomite are related to telogenetic stage. Studies have shown the effect of sandstone composition on the trend and formation of diagenetic process. Some impact of siliciclastic composition on diagenetic event includes the frequency of clay mineral cement as well as feldspar alteration which are high in the feldspar rich petrofacies of the Qadir Member. Diagenetic studies also shows abundant overgrowth silica cement in quartz-rich petrofacies in the Lower Cretaceous (K1 unit) sequences. Diagenesis study of carbonate rocks (K2 unit) led to recognition of different process such as micritization, bioturbation, fibrous isopachous cement in marine diagenesis stage and pendent and iron oxide cements are related to vadose stage. The pendant, drusy calcite and iron oxide cements are related to pheriatic stage. Burial diagenetic process are prismatic bladed, dolomitic, blocky calcite, syntexial overgrowth cements, compaction and fracturing. Luminescence intense of cements ranging from dark red to non-luminescence that led to the separation of the different phases of cementation in carbonate deposits. During uplift stage iron oxide cement and vein filling fractures occurred. Investigation of all diagenetic events in siliciclastic and carbonate rocks of this study shows that deposits has gone under different stage of diagenesis including early, intermediate and deep burial and uplift under the influence of sediment composition.

کلیدواژه‌ها [English]

  • Diagenesis
  • Qadir Member
  • Lower Cretaceous
  • North East Isfahan

آقانباتی، ع (1385) زمین­شناسی ایران، سازمان زمین­شناسی و اکتشافات معدنی کشور، 586 ص.

حـسینی­برزی، م.، و م.، سـعیدی (1389) بـرخـاسـتگاه زمین­ساختی ماسه­سنگ­های سازند پادها در برش سمیر کوه، ایران مرکزی: با در نظر گرفتن تأثیر فرآیندهای دیاژنزی بر ترکیب ماسه­سنگ­ها، علوم زمین، شماره 89، 147-158 ص.

رحیم­پور بناب، ح (1389) سنگ­شناسی کربناته با نگرشی بر کیفیت مخزنی، انتشارات دانشگاه تهران (چاپ دوم)، 554 ص.

صالحی، م.ع.، آدابی، م. ح.، قلاوند، ه.، م. خطیبی مهر (1389) محیط رسوبی، دیاژنز و ژئوشیمی سازند فهلیان در برش نمونه (تاقدیس فهلیان) و میدان نفتی گچساران، نشریه علوم زمین، شماره، 76، 33-44 ص.

محبوبی، ا.، موسوی­حرمی، ر.، قرایی، م. ح.، منصوری دانشور، پ.، و م.، خانه­باد (1387) تفسیر توالی پاراژنتیکی رسوبات رسوبات کربناته کرتاسه فوقانی در شمال­شرق بجستان، مجله علوم دانشگاه تهران، جلد 34، شماره 2، 75-85 ص.

موسسه جغرافیایی و کارتوگرافی گیتاشناسی (1384) اطلس راه­های ایران مقیاس 1:100000، 271 ص.

مزروعی­سبدانی، ز.، م. ع. صالحی.، ح. ر. پاکزاد.، و ع. بهرامی (1395) بررسی رخساره­ها، محیط رسوبی و جایگاه تکتونیکی نهشته­های آواری و کربناته بخش­های پایانی تریاس و کرتاسه پایینی برش کوه بجاره در منطقه دیزلو، شمال شرق اصفهان، پایان­نامه کارشناسی­ارشد، دانشگاه اصفهان، 198 ص.

مزروعی­سبدانی، ز.، م. ع. صالحی.، ح. ر. پاکزاد.، و ع. بهرامی (1395) پتروگرافی و ژئوشیمی ماسه­سنگ­های بخش قدیر از سازند نایبند و توالی قرمز کرتاسه پایینی در برش کوه بجاره، شمال­شرق اصفهان: کاربرد در تعیین جایگاه تکتونیکی، سنگ مادر و آب و هوای دیرینه، بیستمین همایش انجمن زمین­شناسی ایران، 999-1007 ص.

منانی، م.، و م. یزدی (1394) پالئواکولوژی و محیط دیرینه نهشته­های تریاس پسین ایران با تأکید بر یافته­های جدید در برش دیزلو (شمال­شرق اصفهان)، بر اساس حضور مرجان­های اسکراکتینا: فصل­نامه علوم­زمین، شماره 95، 281-290 ص.

Al-Ramadan, K. A., M. Hussain, B. Imam, and S. Saner )2004) Lithologic characteristics and diagenesis of the Devonian Jauf Sandstone at Ghawar Field, eastern Saudi Arabia, Marine and Petroleum Geology, 21: 1221-1234.

Amini, A (2011) Red colouring of the Upper Red Formation in central part of its basin, central zone, Iranian Journal of Sciences, 12: 145-156.

Bathurst, R. G. C (1975) Carbonate Sediments and their Diagenesis, Elsevier Science Publication Company, New York, 658 p.

Bernet, M., and K. Bassett (2005) Provenance analysis by single quartz- grain SEM-CL/Optical microscopy, Journal of Sedimentary Research, 75: 492-500.

Bernet, N., D. Kapoutsos, and K. Bassett (2007) Diagenesis and provenance of Silurian quartz arenite in south-eastern New York State, Sedimentary Geology, 201: 43-55.

Boggs, S., and D. Krinsley (2006) Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks, Cambridge University Press, 165 p.

Brigaud, B., Ch. Durlet, J. F. Deconinck., B. Vincent., J. Thierry., and A. Trouiller (2009) The origin and timing of multiphase cementation in carbonates: Impact of regional scale geodynamic events on the Middle Jurassic Limestones diagenesis (Paris Basin, France), Sedimentary Geology, 222: 161-180.

Burley. S., and R. H. Worden (2003) Sandstone Diagenesis, Recent and Ancient, Reprint of International Association of Sedimentologist, Blackwell, Scientific Publication, Londan, 649 p.

Cook, M. L., A. Simo, C. A. Underwood, and P. Rijken (2006) Mechanical stratigraphic controls on fracture patterns within carbonates and implications for groundwater flow, Sedimentary Geology, 184: 225-239.

Dickinson, W. R (1988) Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basin, In Kleinspehn, K. L., and C. Poala, (Eds.), New Perspective in Basin Analysis, Springer, p. 3-25.

Dickson, J. A. D (1965) A modified staining technique for carbonate in thin section, Nature, 205: 587.

Einsele, G (2000) Sedimentary Basin Evolution, Facies and Sediment Budget (2nd edition), Springer, 792 p.

Flugel, E (2010) Microfacies of Carbonate Rocks, Analysis, Interpretation and Application (2nd edition), Springer, Berlin, 984 p.

Folk, R. L (1980) Petrology of Sedimentary Rocks (2nd edition): Hemphill, Texas, 170 p.

Immel, H., K. Seyed-Emami., and A. Afsharharb (1997) Kreide, Ammoniten aus dem iranischen Teil des Koppeh-Dagh (NE-Iran): Zitteliana, 21: 159-190.

Ingersoll, R. V., T. F., Bullard, R. L. Ford, J. P. Grimm, J. D. Pickle, and S. W. Sares (1984) The effect of grain size on detrital modes: A test of Gezzi-Dickinsonc point-counting method: Journal of Sedimentary Research, 54: 103-116.

James, N. P., and B. Jones (2015) Origin of Carbonate Sedimentary Rocks, Wily, 446 p.

Jiménez-Espinosa, R., and J. Jiménez-Millán (2003) Calcrete development in Mediterranean colluvial carbonate systems from SE Spain, Journal of Arid Environments, 53: 479-489.

Jinliang, Z., Q. Lijuan, and Z. Zhongjie (2008) Depositional facies diagenesis and their impact on the reservoir quality of Silurian sandstone from Tazhong area in central Tarim Basin, western China, Journal of Asian Earth Sciences, 33: 42-60.

Kim, J. C., Y. I. Lee, and K. Hisada (2007) Depositional and compositional controls on sandstone diagenesis, the Tetori Group (Middle Jurassic-Early Cretaceous), central Japan, Sedimentary Geology, 195: 183-202.

Machel, H. G (2000) Application of cathodoluminescence to Carbonate diagenesis, In Pagel M., V. Barbin, P. Blance, and D. Ohnenstetter (Eds.), Cathodoluminescence in Geosciences, Springer, Berlin, p. 271-301.

Major, R. P (1991) Cathodoluminescence in Post-Miocene carbonates, Luminescence Microscopy and Spectroscopy, Qualitative and Quantitative Applications: SEPM, Short Course, 25: 149-53.

Mannani, M., and M. Yazdi (2009) Late Triassic and Early Cretaceous sedimentary sequence of northern Isfahan province (central Iran): Stratigraphy and paleoenvironmnt, Boletin de la Sociedad Geological Mexicana, 61: 374-637.

Mansurbeg, H., S. Morad, A. Salem, R. Marfil, M. El-Ghali, J. Nystuen, M. Caja, A. Amorosi, D. Garcia, and A. La Iglesia (2008) Diagenesis and reservoir quality evolution of Palaeocene deep-water, marine sandstones, the Shetland-Faroes Basin, British continental shelf, Marine and Petroleum Geology, 25: 514-543.

Marshall, D. J (1988) Cathodoluminescence of Geological Materials, Winchester, MA, Allen and Unwin, 128 p.

McBride, E. F (1989) Quartz cement in sandstones: a review, Earth Science Reviews, 26: 69-112.

Melim, L. A., H. Westphal, P. K. Swart, G. P. Eberli, and A. Munnecke (2002) Questioning carbonate diagenetic paradigms, evidence from the Neogene of the Bahama: Marine Geology, 185: 27-53.

Molenaar, N., J. Cyziene, and S. Saulius (2007) Quartz cementation mechanisms and porosity variation in Baltic Camberian sandstone, Sedimentary Geology, 34: 310-316.

Morad, S (1998) Carbonate Cementation in Sandstones, International Association of Sedimentologists, Special Publication, 26: 446 p.

Morad, S., J. M. Ketzer, and L. F. D. Ros (2000) Spatial and temporal distribution of diagenetic alteration in siliciclastic rocks: Implications for mass transfer in sedimentary basins, Sedimentology, 47: 95-120.

Morad, S., K. Al-Ramadan, J. M. Ketzer and L. F. De Ros (2010) The impact of diagenesis on the heterogeneity of sandstone reservoirs: A review of the role of depositional facies and sequence stratigraphy, American Association of Petroleum Geologists Bulletins, 94: 1267-1309.

Mork, M. B. E. and K. Moen (2007) Compaction microstructures in quartz grains and quartz cement in deeply buried reservoir sandstones using combined petrography and EBSD analysis, Journal of Structural Geology, 29: 1843-1854.

Nützel, A., M. Mannani, B. Senowbari-Daryan, and M. Yazdi (2010) Gastropods from the Late Triassic Nayband Formation (Iran), their relationships to other Tethyan faunas and remarks on the Triassic gastropod body size problem: NeuesJahrbuch für Geologie und Paläontologie-Abhandlungen, 256: 213-228.

Olivarius, M., R. Weibel., M. L. Hjuler., L, Kristensen., and A., Mathiesen (2015) Diagenetic effects on prosity-permability relationships in red beds of the lower Triassic Bunter Sandstone Formation in North German Basin., Sedimentary Geology, 321: 139-153.

Reed, J. S., K. A. Eriksson, and M. Kowalewski (2005) Climate, depositional and burial controls on diagenesis of Appalachian Carboniferous Sandstones qualitative and quantitative methods, Sedimentary Geology, 176: 225-246.

Samankassou, E., J. Tresch, and A. Strasser (2005) Origin of peloids in Early Cretaceous deposits, Dorset, South England, Facies, 51: 264-273.

Sandberg, P.A (1983) An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. Nature 305, p. 19- 22

Schmid, S., R. H. Worden, and Q. J. Fisher (2004) Diagenesis and reservoir quality of the Sherwood Sandstone (Triassic), Corrib Field, Slyne Basin, west of Ireland, Marine and Petroleum Geology, 21: 299-315.

Scholle, A. P (1979) A Color Illustrated Guide To Constituents, Textures, Cements, and Porosities of Sandstones and Associated Rocks, The American Association of Petroleum Geologists, 502 p.

Scholle, P. A., and D. S. Ulmer-Scholle (2006) A Color Guide to the Petrography of Carbonate Rocks, American Association of Petroleum Geologists, Memoir, 77, 459 p.

Senowbari-Daryan, B., and K. Rashidi (2010) Foraminifera and their associations of a possibly Rhaetian section of the Nayband Formation in central Iran, northeast of Esfahan: Facies, 56: 567-596.

Seyed-Emami, K (2003) Triassic in Iran: Facies, 48: 91-106.

Seyed-Emami, K., and M. Wilmsen (2016) Leymeriellidae (Cretaceous ammonites) from the Lower Albian of Esfahan and Khur (Central Iran): Cretaceous Research, 60: 78-90.

Stanley, S.M (2006) Influence of seawater chemistry on biomineralization throughout phanerozoic time: Paleontological and experimental evidence, Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2–4): 214-236.

Tucker, M. E. and V. P. Wright (1990) Carbonate Sedimentology, Wiley, 482 p.

Tucker, M. E (2001) Sedimentary Petrology (3ed edition), Blackwell science, 287 p.

Weber, J. and W. Ricken (2005) Quartz cementation and related sedimentary architecture of the Triassic Solling Formation, Reinhardswald Basin, Germany, Sedimentary Geology, 175: 459-477.

Wilmsen, M., F. T.  Fürsich, and M. R. Majidifard (2015) An overview of the Cretaceous stratigraphy and facies development of the Yazd Block, western Central Iran, Journal of Asian Earth Sciences, 102: 73-91.

Worden, R. H., and S. Morad (2000) Quartz cementation in oil field sandstones: a review of the key controversies: In Worden, R., S. Morad, (Eds.), Quartz Cementation in Sandstones, International Association of Sedimentologists, Special Publication, 29: 1-20.

Worden, R., and S. Burley (2003) Sandstone diagenesis, the evolution of sand to stone: In Burley S. D. and R. Worden (Eds.), Sandstone Diagenesis: Recent and Ancient, Blackwell Publishing, p. 3-44.