مطالعات بافتی، معرفی تیپ های کانسنگی و خاستگاه نهشته بوکسیت تریاس-‌ ژوراسیک سیاهرودبار، جنوب‌شرق گرگان

نویسندگان

1 گروه علوم‌زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز

2 گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه ارومیه، ارومیه

3 گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه گلستان، گرگان

چکیده

نهشته بوکسیت سیاهرودبار در حدود 25 کیلومتری جنوب‌باختر علی‌آباد کتول، استان گلستان، شمال ایران واقع می­باشد. این نهشته به صورت یک افق چینه­سان در مرز بین سازندهای الیکا و شمشک توسعه و تکامل یافته است. مطالعات سنگ­نگاری همراه با نتایج تجزیه پراش پرتو X (XRD) در نمونه‌های کانسنگی آشکار نمود که دیاسپور، هماتیت و کائولینیت کانی‌های متشکله اصلی بوده که توسط مقادیر کمتری شاموزیت، آناتاز، بوهمیت، گوتیت، روتیل، کلسیت، موسکویت، کلینوکلر و کوارتز همراهی می‌شوند. این کانی‌ها بافت‌های گوناگونی از جمله پلیتومورفیک، گرانولار، پورفیری‌دروغین، جریانی، برشی‌دروغین، دانه‌های دمبلی شکل و قطعات تخریبی (کلاست) را به نمایش می‌گذارند که دلالت بر منشاء نابرجای نهشته دارند. بر اساس مقادیر کمّی کانی‌ها، نهشته سیاهرودبار شامل دو نوع کانسنگ (1) بوکسیت رسی و (2) رس بوکسیتی می باشد. این کانسنگ­ها در طی فرآیندهای آهن‌زدایی و سیلیس‌زدایی از کانی‌های رسی شکل گرفته‌اند. یافته‌های زمین­شیمیایی عناصر کم­‌تحرک، نشان می‌دهند که نهشته مورد مطالعه از نوع بوکسیت‌های کارستی بوده و عمدتاً  از هوازدگی سنگ‌های بازالتی- آندزیتی ایجاد شده است. افزون بر این، مقادیر بی‌هنجاری­های Eu به همراه مقادیر نسبت‌های TiO2/Al2O3 و Sm/Nd آشکار می­کنند که نهشته بوکسیتی سیاهرودبار در یک خاستگاه تکتونیکی حاشیه قاره تشکیل شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Textural studies, introduction of ore types, and origin of the Triassic-Jurassic Siahrudbar bauxite deposit, southeast of Gorgan

نویسندگان [English]

  • M. Kiaeshkevaryan 1
  • A. A. Calagari 1
  • A. Abedini 2
  • G. H. Shamanian 3
چکیده [English]

The Siahrudbar bauxitic horizon is located in ~25 km southwest of Aliabad Katoul, Golestan Province, north of Iran. This deposit is stratiform and were developed along the boundary of the Elika and Shemshak formations. Petrographic observations along with the results of XRD analyses of the ore samples revealed that diaspore, hematite, and kaolinite are the major constituent minerals which are accompanied by lesser amounts of chamosite, anatase, boehmite, goethite, rutile, calcite, muscovite, clinochlore, and quartz. These minerals display various textures including pelitomorphic, granular, pseudo-porphyry, fluidal, pseudo-breccia, dumbbell-shaped grains, and clastic fragments, indicating allogenic origin. Based upon quantitative values of minerals, the Siahrudbar deposit consists of two types of ores, (1) the clayey bauxite and (2) the bauxitic clay. These ores were formed during deferrugenization and desilication processes from the clay minerals. The geochemical data of less mobile elements indicate that the Siahrudbar deposit is of karst bauxite type and generated from the weathering of igneous (basaltic-andesitic) rocks. Furthermore, the Eu anomaly values together with the ratios of TiO2/Al2O3 and Sm/Nd revealed that the Siahrudbar bauxitic deposit was formed in a continental margin tectonic setting.

کلیدواژه‌ها [English]

  • Bauxite
  • Siahrudbar
  • mineralogy
  • authigenic origin
  • Eu anomaly
  • Weathering

پاوندی، ع (1396) مطالعه بافتی، کانی­شناسی و ژئوشیمی عناصر نادر خاکی در کانسار بوکسیت سیاهرودبار، استان گلستان، پایان­نامه کارشناسی­ارشد دانشگاه گلستان.

جعفریان، م. ب.، جلالی، ع (1383) نقشه زمـین­شناسی خوش­ییلاق با مقیاس 1:100000، انتشارات سازمان زمین­شناسی و اکتشافات معدنی کشور.

زمانی، ع.، شمعانیان، غ. ح (1394) کانی‌شناسی وزمین‌شیمی نهشته بوکسیتی سیاهرودبار، جنوب­شرق گرگان، بیست و سومین همایش بلورشناسی و کانی‌شناسی ایران، دانشگاه دامغان.

شمعانیان، ‌غ. ح (1389) مطالعات زمین‌شناسی اقتصادی نهشته‌های بوکسیت سیاهرودبار، ‌استان گلستان، ‌ایران، گزارش نهایی طرح تحقیقاتی، دانشگاه گلستان، 35ص.

شمعانیان، ‌غ. ح.، منفرد، ز.، عمرانی، ه (1394) مشخصات چینه‌شناسی، سنگ‌نگاری و رخساره‌ای نهشته‌های بوکسیتی- لاتریتی تاش و آستانه در البرز شـرقی: رهیافت­های دیرینه محیطی، نشریه رخساره‌های رسوبی، 71- 84.

فرامرزی، ر.، شمعانیان، غ. شفیعی، ب (1391) کانی‌شناسی، زمین‌شیمی و خاستگاه نهشته بوکسیت قشلاق، جنوب شرق گرگان. مجله زمین‌شناسی اقتصادی، شماره 1، جلد 4.

کنگرانی­فراهانی، ف.، کلاگری، ع. ا.، عابدینی، ع (1393) کانی‌شناسی و ژئوشیمی نهشته لاتریتی کمبلو، باختر کرمان، استان سمنان، شماره 94، 349-358.

مهندسین مشاور سازند ایران (1362) گزارشاکتشاف ذخایر بوکسیت مواد آلومینو سیلیکاته ناحیه سیاه رودبار (جنوب علی­آباد گرگان)، چاپ نشده.

Abedini, A., Calagari, A. A., Mikaeili, K (2014) Geochemical characteristics of laterites: the Alibaltalu deposit, Iran, 148: 69–84.

Ahn J. H., Peacor D. R (1985) Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceouse sedimens, Clay Clay Miner , 33: 228-236.

Asiabanha, A., Foden J (2012) Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz Ranges, N-Iran, Lithos, 148 : 98–111.

Bardossy, G (1982) Karst Bauxites–Bauxite deposits on carbonate rocks. Developments in Economic Geology, Elsevier Amsterdam, 14: 441.

Bardossy, G. Y., Aleva G. Y. Y (1990) Lateritic bauxites, Akademia, Kiado Budapest, 646p.

Bish, D. L., Howard, S. A (1988) Quantitative Phase Analysis Using the Rietveld Method, J. Appl. Cryst, v. 21, 86-91.

Boni, M., Rollinson, G., Mondillo, N., Balassone, G., Santoro, L (2013) Quantitative mineralogical characterization of karst bauxite deposits in the southern Apennines, Economic Geology, 108: 813–833.

Brimhal, G. H., Dietrich, W. E (1987) Constitutive mass balance differential feldspar weathering in granites relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedrogenesis, Geochimica et Cosmochimica Acta, 51: 567–587.

Carroll, D (1985) Role of clay minerals in the transportation of iron, Geochimica et Cosmochimica Acta, 14: 1–27.

Condie, K (1991) Another look at REEs in shales, Geochimica et Cosmochimica Acta, 55: 2527–2531.

Esmaeily, D., Rahimpour-Bonab, H., Esna-Ashari, A., Kananian, A (2010) Petrography and geochemistry of the Jajarm Karst bauxite ore deposit, NE Iran: implications for source rock material and ore genesis, Turkish Journal of Earth Sciences, 19: 267–284.

Floyd, P. A., Winchester, J. A (1978) Identification and discrimination of altered and metamorphosed volcanic rocks using immobile chemical elements, Chemical Geology, 21: 291–306.

Fursich, F. T., Wilmsen, M., Seyed-emami, K., Majidifard, M. R (2009) Lithostratigraphy of the Upper Triassic–Middle Jurassic Shemshak Group of Northern Iran, In South Caspian to Central Iran Basins. Geological Society, London, Special Publications, 312: 129–160.

Ghaetani, M., Angiolini, L., Ueno, K., Nicora, A., Stephenson, M. H., Sciunnach, D., Rettori, R., Price, G. D., Sabouri, J (2009)  Pennsylvanian–Early Triassic stratigraphy in the Alborz Mountains (Iran), The Geological Society, 312: 79–128.

Hallberg, J. A (1984) A geochemical aid to igneous rocks type identification in deeply weathered terrain, Journal of Geochemical Exploration, 20: 1–8.

 Hanilçi, N (2013) Geological and geochemical evolution of the Bolkardaği bauxite deposits, Karaman, Turkey: Transformation from shale to bauxite, Journal of Geochemical Exploration, 133: 118–137.

Hill, I. G., Worden, R. H. G., Meighan, I. G (2000) Geochemical evolution of paleolaterite: the interbasaltic Formation, Northern Ireland, Chemical Geology, 166: 65–84.

Mattei, M., Cifelli, F., Muttoni, G., Rashid, H (2014) Post-Cimmerian (Jurassic–Cenozoic) paleogeography and vertical axis tectonic rotations of Central Iran and the Alborz Mountains, Journal of Asian Earth Sciences, 102: 92–101.

Mameli, P., Mongelli, G., Oggiano, G., Dinelli, E (2007) Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (western Sardinia, Italy): insights on conditions of formation and parental affinity, International Journal of Earth Sciences, 96: 887–902.

Mason, B., Moore, C. B (1982) Principles to geochemistary, John Wiley and sons, 331p.

Mindszenty, A., DArgenio, B., Aiello, G (1995) Lithosphrric bulges at regional unconformities. the case of Mesozoic-Tertiary in Apulia, Tectonophysics , 252: 137-161.

Mongelli, G (2002) Growth of hematite and boehmite in concretions from ancient karst bauxite: clue for past climate, Catena, 50: 43–51.

Mongelli, G., Buccione, R., Gueguen, E., Langone, A., Sinisi, R (2016) Geochemistry of the Apulian allochthonous karst bauxite, Southern Italy: Distribution of critical elements and constraints on Late Cretaceous Peri-Tethyan palaeogeography, Ore Geology Reviews, 77: 246–259.

Mongelli, G., Boni, R., Buccione, R., Sinisi R (2014) Geochemistry of the Apulian karst bauxites (southern Italy): Chemical fractionation and parental affinities, Ore Geology Reviews, 63: 9–21.

Özlö, N (1983) Trace-element content Karst Bauxites and their parent rock in the Mediterranean belt, Mineralum deposita, 18: 469–476.

Radusinović, S., Jelenković, R., Pačevski, A., Simić, V., Božović, D., Holclajtner-Antunović, I., Životić, D (2017) Content and mode of occurrences of rare earth elements in the Zagrad karstic bauxite deposit (Nikšić area, Montenegro, Ore Geology Reviews, 80: 406–428.

Rafiei, B., Mollai, H., Ghorbani, M (2008) HamedanThe genesis of Late Triassic allochthonous karst-type bauxite deposits of the Kisejin area, Ab-e-Garm district, Iran, Geol. Paläont. Abh, 250: 217–231.

Shaw, D. M (1964) Interpretation geochemique des elements en traces dans les roches cristallines, Masson et Cie, Paris.

Schroll, E., Sauer, D (1968) Beitrag zur Geochemie von Titan, Chrom, Nikel, Cobalt, Vanadium and Molibdan in Bauxitischen gestermenund problem der stofflichen herkunft des Aluminiums, Travaux du ICSOBA, 5: 83–96.

Stampfli, G. M., Marcoux, J., Baud, A (1991) Tethyan margins in space and time, Palaeogeography, Palaeoclimatology, Palaeoecology, 87: 373–409.

Tardy, Y., Nahon, D. B (1985) Geochemistry of laterites, Stability of Al-goethite, Al-hematite and  Fe3+-kaolinite in bauxites and ferricretes: An approach to the mechanism of concretion formation, American Journal of Science, 285: 865–903.

Taylor, S. R., McLennan, S. M (1985) The continental crust: its composition and evolution, Blackwell Scientific Publication, Carlton, 312 p.

Taylor, S. R (1964) Abundance of chemical elements in the continental crust: a new table, Geochimica et Cosmochimica Acta, 196: 1273–1285.

Valeton, I )1972( Bauxites: Development in Soil Sciences, Elsevier, Amsterdam, 226 p.

Wang, Q. F., Deng, J., Zhang, Q. Z., Liu, H., Liu, X. F.,Wan, L., Li, N.,Wang, Y. R., Jiang, C. Z., Feng, Y. W (2011) Orebody vertical structure and implications for ore forming processes in the Xinxu bauxite deposit,Western Guangxi, China, Ore Geology Reviews, 39: 230–244.

Zamanian, H., Ahmadnejad F., Zarasvandi A (2016) Mineralogical and geochemical investigations of the Mombi bauxitedeposit, Zagros Mountains, Iran, Chemie der Erde-Geochemistry, 76 : 13–37.

Zanchi, A., Zanchetta, S., Berra, F., Matti, M., Garzanti, E., Molyneux, S., Navabi, A., Sabouri, J (2009) The Eo-Cimmerian (Late? Triassic) orogeny in North Iran , In South Caspian to Central Iran Basins. Geological Society, London, Special Publications, 312: 129–160.

Zhang, L., Park, C., Wang, G., Wu, C., Santosh, M., Chung, D., Song, Y (2017) Phase transformation processes in karst-type bauxite deposit from Yunnan area, China, Ore Geology Reviews, 89: 407–420