بررسی ژئوشیمی، فرآیندهای دیاژنزی و محیط رسوبی سازند تیرگان در نواحی شرقی حوضه رسوبی کپه‌داغ شمال‌شرق ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زمین‌شناسی، دانشگاه آزاد اسلامی، واحد مشهد، مشهد

چکیده

سازند تیرگان به سن کرتاسه زیرین (بارمین – آپتین)، یک سازند کربناته با میان لایه­های شیلی و مارنی است. با توجه به پتانسیل مخزنی، تاکنون این سازند به خصوص در این نواحی و از دیدگاه دیاژنز به کمک داده­های ژئوشیمیایی مورد مطالعه دقیق قرار نگرفته است لذا به منظور مطالعه آن دو برش در نواحی شرقی حوضه رسوبی کپه­داغ انتخاب شد که شامل برش سررود به ضخامت 136 متر و برش کلاته ابراهیم بیگ به ضخامت 45 متر می­باشد. از این برش­ها 132 مقطع نازک تهیه شد.  نتایج حاصل از مطالعات پتروگرافی مقاطع نازک منجر به شناسایی 12 رخساره­ی کربناته شامل 4 مجموعه رخساره­ای پهنه کشندی، لاگون نیمه محصور، سد پراکنده و جلوی سد و نیز 4 رخساره­ی آواری در دو گروه نامتجانس و متجانس مربوط به پهنه کشندی شده است. با توجه به رخساره­های سنگی شناسایی شده، این سازند در یک رمپ کربناته هموکلینال نهشته شده است. مهم­ترین فرآیندهای دیاژنتیکی شناسایی شده در سازند تیرگان عبارتند از سیمانی شدن، میکریتی شدن، انحلال، فشردگی، دولومیتی شدن، شکستگی، نئومورفیسم، استیلولیتی شدن و سیلیسی شدن می­باشد.
به منظور مطالعات ژئوشیمیایی 35 نمونه به روش پلاسمای جفت شده القایی و 15 نمونه به روش جذب اتمی آنالیز شدند. پراکندگی عناصر اصلی (Ca,Mg) و فرعی (Fe,Mn,Na,Sr) و گستره ایزوتوپی اکسیژن 18 و کربن 13 آهک­های سازند تیرگان، نشان­دهنده ترکیب کانی­شناسی اولیه کلسیتی در این نواحی می­باشد. هم­چنین این مقادیر تاثیر محیط غالب دیاژنز تدفینی  بر روی این نهشته­ها را در یک سیستم دیاژنزی نیمه بسته و با نسبت آب به سنگ پایین نشان می­دهد. دمای آب دریا در زمان ته­نشست کربنات­های سازند تیرگان با استفاده از سنگین­ترین ایزوتوپ اکسیژن در نمونه­های گل­آهکی، 64/23 درجه سانتی­گراد برآورد شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of geochemical, diagenetic processes and deposition environment of Tirgan Formation in eastern part of Kopet Dagh basin of north east of Iran

نویسندگان [English]

  • M. Javanbakht
  • S.A. Tayeban
  • M. R Poursoltani
چکیده [English]

The Tirgan Formation, Cretaceous (Barremian-Aptian) in age, a carbonate formation with shale and Marl interlayers. Considering reservoir potential, this formation has not been studied precisely in the study areas, and from the viewpoint of diagenesis, based on geochemical results. Therefore, in order to study, two sections, Sar-rud with 136 m thick, and Kalteh Ebrahim Baig with 45 m thick, in the eastern of the Kopet Dagh basin, were measured. Finally, for petrology study, 132 thin section were prepared. In according to petrology studies, 4 facies associations, including 14 carbonate facies, intertidal flat, semi-restricted lagoon, shoal and open sea, and also 4 siliciclastic facies in two groups related to tidal flat were indentified. Due to identified rock facies, this formation deposited in a homoclinal carbonate ramp. The most important identified diagenetic processes in the Tirgan Formation are cementation, micritization, dissolution, compression, dolomitization, fracturing, neomorphism, stylolitization and silicification. For the geochemical studies, 35 samples by inductively coupled plasma, and also 15 samples by atomic absorption method were analyzed. The dispersion of the major elements (Ca, Mg) and the minor element (Fe, Mn, Na, Sr) and the isotopic range of O18 and C13, indicate the composition of primary calcite mineralogy. Also, these values ​​show the effect of the dominant burial environments on this strata in a diagonal and semi-closed diagonal system with a low water-rock reaction. The sea water temperature at the time of precipitation of carbonates of Tirgan Formation using the heaviest oxygen isotope in limy mud 234.6 ° C is estimated.

کلیدواژه‌ها [English]

  • Tirgan Formation
  • depositional environment
  • diagenesis
  • geochemistry
  • Kopet-Dagh
افشارحرب، ع (1373) زمین­شناسی کپه­داغ، طرح تدوین کتاب سازمان زمین­شناسی کشور، ۲۷۵ ص.
آدابی، م، ح (1383) ژئوشیمی رسوبی، انتشارات آرین زمین، 448 ص.
آدابی، م، ع، عباسی، ر (1388) بررسی تاریخچه دیاژنتیکی سازند داریان براساس پتروگرافی و ژئوشیمیایی در کوه سیاه (شمال­شرق شیراز) و چاه شماره 1 سبزپوشان، مجله علوم دانشگاه تهران، شماره 4،  53-75.
آدابی، م، ح، جـمالیان، م (1386) شـناسـایی تــرکیـب کانی­شناسی اولیه و نحوه کانسارسازی در کربنات­های معدن رباط ( خمین – اراک). مجله علوم زمین 6، 23-2.
آدابی، م، موسوی، م، صادقی، ع، جمالیان، م (1390) ژئوشیمی و پتروگرافی سازند گرو (نئوکومین – آپسین) در برش نمونه (کبیرکوه، استان ایلام)، مجله پژوهش­های چینه­نگاری و رسوب­شناسی، شماره 2،  1-26.
باقرنژاد، س (1391) تاریخـچه رسـوب­گذاری و پـس از رسوب­گذاری سازند تیرگان در ناحیه آبگرم، شمال مشهد، رساله کارشناسی­ارشد دانشگاه فردوسی مشهد، 106 ص.
پورسلطانی، م.، کرمانشاهی، ح.، جوانبخت، م (1396) تفسیر محیط­رسوبی، دیاژنز و کیفیت مخزنی سازند تیرگان به عنوان سنگ مخزن احتمالی در خاور حـوضه رسـوبی کپه­داغ، دوفصلنامه رسوب­شناسی کاربردی، شماره 10، 127-151.
تیمورپور، خ (1382) لیتواستراتیگرافی و تاریخچه رسوبگذاری سازند تیرگان در شرق حوضه رسوبی کپه­داغ، رساله کارشناسی­ارشد دانشگاه فردوسی مشهد، 167 ص.
جوانبخت، م (1390) تاریخچه رسـوب­گذاری و پـس از رسوب­گذاری سازند تیرگان در نواحی مرکزی و غربی حوضه رسوبی کپه­داغ. رساله دکتری، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران.  220 ص.
خاکستری، م.، محمودی­قرائی، م. ح.، محبوبی، ا.، موسوی حرمی، ر (1392) ژئوشیمی عناصر اصلی شیل­های سازند تیرگان و مقایسه آن با سازندهای شوریجه و سرچشمه در شـرق حوضه کـپه­داغ. هـفدهمین هـمایش انجـمن زمین­شناسی ایران، دانشگاه شهید بهشتی، 286-289.
ریوندی، ب (1386) چینه­نگاری زیستی و سکانسی سازند تیرگان در ناودیس خور در شمال­شرق مشهد، رساله کارشناسی­ارشد، دانشگاه فردوسی مشهد، 175 ص.
کباری، ر (1387) رخساره­های رسوبی و چینه­نگاری سکانسی سازند تیرگان در شمال چناران در بخش مرکزی حوضه رسوبی کپه­داغ، پایان­نامه کارشناسی­ارشد، دانشگاه فردوسی مشهد، 214 ص.
محبوبی، ا، موسوی­حرمی، ر، محمودی­قرایی، م، منصوری دانشور، پ، خانه­باد، م (1387) تفسیر توالی پاراژنتیکی رسوبات کربناته کرتاسه فوقانی در شمال شرق بجستان، مجله علوم دانشگاه تهران 2، 85-75.
عزیزعینی، م (1394) چینه­نگاری سکانسی و دیاژنز سازند تیرگان واقع در ناودیس شوراب، رساله کارشناسی­ارشد، دانشگاه فردوسی مشهد، 185 ص.
محمدی، م (1392) چینه­نگاری سکانسی سازند تیرگان در ناحیه بزنگان، رساله کارشناسی­ارشد، دانشگاه فردوسی مشهد،96 ص.
مرتضوی مهریزی، م (1386) چینه­نگاری سکانسی سازندهای شوریجه و تیرگان (کرتاسه تحتانی) در ناحیه سفید سنگ شمال شرق فریمان، پایان­نامه کارشناسی­ارشد، دانشگاه فردوسی مشهد، 310 ص.
موسوی­زاده، م، ع.، محبوبی، الف.، موسوی­حرمی، ر.، نجفی، م (1386) تاریخچه رسوب­گذاری و چینه­نگاری سکانسی سازند تیرگان در جنوب­غرب روستاهای جوزک و چمن بید در غرب حوضه رسوبی کپه­داغ مجموعه مقالات یازدهمین انجمن زمین­شناسی ایران، 705-709.
یاورمنش، ه.، آریایی، ع، ا.، عاشوری، ع، ر (1389) ریزرخساره­های سازند تیرگان در برش گلیان، جنوب شیروان، چهارمین همایش انجمن زمین­شناسی ایران و بیست و هشتمین گردهمایی علوم­زمین، 120-129.
هاشمیان­کاخکی، ن (1385) تحول زمین­شناسی و بررسی چینه­شناسی و میکروفاسیس اورگونین سازند تیرگان در حوضه کپه­داغ، رساله کارشناسی­ارشد، دانشگاه آزاد اسلامی مشهد. 130 ص.
هاشمیان ­اخکی، ن.، آریایی، ع، ا (1386) معرفی گونه­هایی از خارپوستان سازند تیرگان، مجموعه مقالات اولین همایش انجمن دیرینه­شناسی ایران، 154-158.
Adabi, M. H (1996) Sedimentology and geochemistry of carbonates from Iran and Tasmania, Ph. D. thesis (Unpublished). University of Tasmania Australia, 470 P.
Adabi, M. H., and, Asadi Mehmandosti, E (2008) Microfacies and geochemistry of the Ilam Formation in the Tang-E Rashid area, Izel, S. W. Iran. Asia Earth Sciences Journal of Asia Earth Sciences, 33: 276-277.
Adabi, M. H., and Rao, C. P (1991) Petrographic and geochemiscal evidence for orginal aragonitic mineralogy of Upper Jurassic carbonate (Mozdoran Formation), Sarakhs area, Iran: Sedimentary Geology,72: 253-267.
Adabi, M, H., Salehi, M. A., Ghabeshavi, A (2010) Depositional environment, Sequence Stratigraphy and geochemistry of lower Cretaceous carbonates (Fahliyan Formation) ,south-west Iran,Journal of Asian Earth Sciences, 39: 148-160.
Aghaei, A., Mahboubi, A., Moussavi Harami, R., Najafi, M., Chakarpani, G, J (2014) Carbonate Diagenesis of the Upper Jurassic Successions in the West of Binalud-Eastern Alborz (NE Iran). Jurnal Geological Society of India, 83: 311-328.
Ahamad, S., Kroon, D., Rigby, S., Hanif, M., Imraz, M., Ahmad, T., Jan, I.U., Ali, A., Zahid, M., Ali, F (2014) Integrated paleoenvironmental, bio – and sequence – stratigraphic analaysis of the late Thanetian Lockhart Limestone in the Nammal Gorge section, western Salt Range, Pakistan, Journal of Himaliyan Earth Sciences, 47 (1): 9-24.
Alsharhan, A. S., and Kendall (2003) Holocene coastal carbonates and evaporates of the southern Arabian Gulf and their ancient analogues, Earth Science Review, 61: 191-243.
Al-Ghreri, M. F., Al-Jibouri, A. M., Al-Ahmed, A. A (2014) Facies architecture and sequence development of the Euphrates formation in western Iraq.Arabian Journal of Geosciences, 7: 2679-2687.
Anderson, T. F. and Arthur M. A (1983) Stable isotopes of oxygen and carbon and their application to sedimentologic and paleonvironmental problems. In: Stable Isotopes in Sedimentary Geology (eds. M. A. Arthur, T. F. Anderson, I. R. Kaplan, J. Veizer and L. S. Land). SEPM Short Course, 10: 1–151.
Armella, C., Cabaleri, N. G., Cagnoni, M. C., Panarello, H. O (2013) Early Callovian ingression in southwestern Gondwana. Palaeocenvironmental evolution of the carbonate ramp (Calabozo Formation) in southwestern Mendoza, Neuqune basin, Argentina, Journal of South American Earth Sciences, 45: 293-315.
Asadi Mehmandosti, E., Adabi, M. H., Woods, A. D (2013) Microfacies and geochemistry of the Middle Cretaceous Sarvak Formation in Zagros Basin,Izeh, Zone,SW,Iran. Sedimentary Geology, 293: 9-20.
Bachmann, M. And Hirsch, F (2006) Lower cretaceous carbonate platform of the eastern levant (Galilee and the Golan Heights): Stratigraphy and second – order sea –level change, Cretaceous Research, 27: 487-512.
Bathurst, R. G. C (1975) Carbonate Sediment and their Diagenesis: Amsterdam. Elsevier Scientific Publishing Company, 658p.
Beigi, M., Jafarian, A., Javanbakht, M., Wanas, H. A., Mattern, F., Tabatabaei, A (2017) Facies analaysis, diagensis and sequence stratigraphy of the carbonate-evaporite succession of the Upper Jurassic Surmeh Formation: Impact on reservoier quality (Salman Oil Field, Persian Gulf, Iran). J. Afr. Earth. Sci. 129: 179-194.
Bernasconi, S. M, Schmid, T. W, Grauel, A, Mutterlose, J (2011) Clumped-Isotope Geochemistry of carbonates: A new tool for the reconstruction of temperature and oxygen isotope composition of seawater,Applied Geochemistry, 26: 279-280.
Betzler, C., Pawellek, T., Abdullah, M.and Kossler, A (2006) Facies and stratigraphic architecture of the Korallenoolith Formation in North Germany (Lauensteiner Pass, Ith Mountains). Sedimentary Geology, 194: 61-75.
Brand, U., and Morrison, J. O (1987) Biogeochemistry of fossil marine invertebrates: Geosci. Canada, 14: 85-107.
Brand, U., and Veizer, J (1980) Chemical diagenesis of multicomponent carbonate system -1: trace elements: Journal of Sedimentary Petrology, 50: 1219-1236.
Boggs, S, J (2015) Provenance studies and mudrocks. Journal of Sedimentary Petrology, 55: 69-75.
Bover-Arnal, T., Salas, R., Moreno-BedmarJ. A., and Bitzer, K (2009) Sequence stratigraphy and architecture of a late Early-Middle Aptian carbonate platform succession from the western Maestrat Basin (Iberian Chain ,Spain). Sedimentary Geology ,219: 280-310.
Budd, D. A. and Harris, P. M (Eds) (1990) Carbonate-siliciclastic mitures. Society for Sedimentary Geology, Reprint Series No. 14, 272 p.
Carpentier, C., Lathuilière, B., Ferry, S., & Sausse, J (2007) Sequence stratigraphy and tectonosedimentary history of the Upper Jurassic of the Eastern Paris Basin (Lower and Middle Oxfordian, NortheasternFrance). Sedimentary Geology, 197 (3-4): 235-266.
Caron V., and C, Nelson (2009) Diversity of neomorphic fabrics in New Zealand Plio-Pleistocene cool-water limestones: Insights intoaragonite alteration pathways and controls: Journal of Sedimentary Research, 79: 226-246.
Choquette, P. W., and James, N. P (1987) Diagenesis in Limestones –The Deep Burial Environment. Geoscience Canada, 14: 3-35.
Dickson, J. A. D (1996) Carbonate identification and genesis as revealed by staining, Journal of Sedimentary Petrology, 36: 441-505.
Dunham, R. J (1962) Classification of carbonate rocks according to depositional texture. In: Ham, W. E. (Ed.), Classification of Carbonate Rocks. American Association of Petroleum Geologists Memoir 1, Tulsa, 108–121.
Dupraz, C., Pattisina, R., and, Verreccchia, E. P (2006) Translatio of enrgy into morphology: simllation of stromatolite morphospace using a stochastic model, sedimentary geology, 185: 185-203.
Friedman, G. M (1965) Terminology of Crystallization Textures and fabrics in sedimentary rocks. Jurnal of Sedimentary Petrology, 35: 643-655.
Flugel, E (2010) Microfacies Analysis of Carbonate Rocks, Analysis, Interpretation and Application, Springer Verlag, Berlin, 976 P.
Flugel, E (2004) Microfacies of Carbonate Rocks: Analysis, Interpretation and Application, Springer Verlag, Berlin, 967 P.
Folk, R. L (1980) Petrology of Sedimentary Rocks. Hemphill Publishing Co. Austin, Texas, 182 P.
Grabau, A. W (1904) On the classification of sedimentary rock. American Geology, 33: 228-24.
Grock, D. R., Price, G. D., Rufell, A. H., Mutterlose, J. and Baraboshkin, E (2003) Isotop evidence for Late Jurassic Early Cretaceous Climate Change, Palaeogeography Paleoclimatology Pslaeoecology, 209: 97-118.
Haeri Ardakani, O., Sanei, H., Lavoie, D., Chen, Z., Mechti, N (2014) Thermal Maturity and Organic Petrology of the Upper Ordovician Utica and Lorraine shales ,Southern Qubec, Canada, Geo Convention, Calgary, Alberta, Canada, 20: 45-55.
Heidari, A., Mahboubi, A., Moussavi-Harami, R., Gonzalez, L., Moalemi, S. A (2014) Biostratigraphy, sequence stratigraphy, and paleoecology of the Lower–Middle Miocene of Northern Bandar Abbas, Southeast Zagros basin in south of Iran. Arab. J. Geosci, 7(5): 1829–1855.
Hudson, J. D. and Anderson, T. F (1989) Ocean temperatures and isotopic compositions through time: trans. Roy. Soc. Edinberg, Earth Sci., 80: 183-192.
Immenhauser , A., Schlager, W., Burns, S. J., Scott, R. W., Geel, T., Lehmann, J., Van der Gaast, S. and Bolder- Schrijwer, L. J. A (1999) Late Aptian to Late Albian sea –level fluctuation constrained by geochemical and biological evidence (Nahr Umr Formation, Oman). Journal of Sedimentary Research, 69:  434-466.
Jafarian, A. Fallah-Bagtash, R., Mattern, F., Heubeck, CH (2017) Reservoie Quality along a homoclinal carbonate ramp deposit: The Permian Upper Dalan Formation, South Pars Field, Persian Gulf Basin, Marine and Petroleum Geology, 88: 587-604.
Javanbakht, M., Ghazi, S., Moussavi-Harami, R., Mahboubi, A (2013) Depositional History and Sequence Stratigraphy of Tirgan Formation (Barremian-Aptian), in Central Kopet - Dagh, NE Iran, Journal Geological Society of India, 82: 701-711.
Javanbakht, M. Wanas, H. A. Jafarian, A. Shahsavan, N. Sahraeyan, M (2018) Carbonate diagenesis in the Barremian-Aptian Tirgan Formation (Kopet-Dagh Basin, NE Iran): Petrographic, geochemical and reservoir quality constraints, Journal of African Earth Sciences, 144:  122-135.
Kelth L. M., Weber J. N (1964) Carbon and oxygen isotopic composition of limestones and fossils, Geochimestry Cosmochim Acta, 28: 1787-1816.
Kietzmann, D, A., Palma, R. M., Riccardi, A. C., Martin-Chivelet, J., Lopez-Gomez, J (2014) Sedimentology and sequence stratigraphy of a Tithonian – Valanginian carbonate ramp (VacaMuerta Formation): Amisunderstood exceptional source rock in the Southern Mendoza area of the Neuquen Basin, Argentina, Sedimentary Geology, 203: 64-86.
Knorich, A. C., and M., Mutti (2006) Missing aragonitic biota and the diagenetic evolution of Hetrozoan Carbonate: a case study from the Oligo-Miocene of the central Mediterranean, Jurnal of Sedimentary Research, 76: 871-888.
Lasemi, Y., Jahanj, D., AminRasouli, H., Lasemi, Z., AncientCarbonate Tidalites, in: Davis, R. A., Darlymple. R. W (2012) Principles of tidal Sedimentology. Springer Drodrecht Heidelberg London NewYork-Tokyo. 567-607.
Li, F., Yan, J., Algeo, T., Wu, W (2013) Paleoceanographic conditions following the end-Permian mass extinction recorded by giant ooids (Moyang, South china), Global and Planetary change, 105: 102-120.
Lomando, A. J. and Harris, P. M., (Eds) (1991) Mixed Carbonate-siliciciclastic Sequences. Society for Sedimentary Geology, Core Workshop No. 15, 437 p.
Machel, H. G., Anderson, J. H (1989) Perrasive Sub surface dolomitization of the Nisku formation in contral Alberta, Journal of Sedimentary petrology, 59: 891-911.
Marshall, J. D (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and theirl preservation: Geol. Magazine, 129: 143-160.
Mehrabi, H., Rahimpour – Bonab, H., Enayati-Bidgoli, A. H., Navidtalab, A (2013) Depositional environment and sequence stratigraphy of the Upper cretaceous Ilam Formation in centeral and southern parts of the Dezful Embayment, SW Iran, Carbonate Evaporites, 29: 263-278.
Milliman, J. D (1974) Marine Carbonates: New York, Spinger-Verlag, 375P.
Morse, J. W. and Mackenzie. F. T (1990) Geochemistry of Sedimentary carbonate. Developments in Sedimentology 48, Elsevier, New York, 707P.
Moore, CH., Wade, WJ (2013) Carbonate reservoirs: porosity and diagenesis in a sequence stratigraphic Framework. Developments in Sedimentology, 67: 1-374P.
Mucci, A (1998) Manganese uptake during calcite precipitation from seawater: conditions leading to the formation of a pseudokutnahorite: Geochemical ET Cosmochimica Acta, 52: 1859-1868.
Muzzulla, S. J (1992) Geochemical and neomorphic alteration of dolomite, a reviw. Carbonates and Evaporites, 7: 21-37.
Nelson, C. S., and Smith, A. M (1996) Stable oxygen and carbon isotope compositional fields for skeletal and diagenetic components in New Zealand Cenozoic nontropical carbonate sediments and limestones: a synthesise and review: New Zealand Jour. Geology, Geophysics, 39: 93-107.
Palma, R., Lopez-Gomez, J. and Piethe, R (2007) Oxfordian ramp system (La Manga Formatin) in the Bardas Blancas area (Mendoza Province) Neuquen Basin, Argentina: Facies and depositional sequences Sedimentary Geology, 195: 113 -134.
Pettijohn, F. J (1975) Sedimentary Rocks (3rd edition), Harper and Row, New York, 628P.
Rao, C. P (1991) Geochemical differences between subtropical (Ordovician), temperate (Recent and Pleistocence) and subpolar (premian) carbonates, Tasmania, Australia. Carbonates and Evaporites, 6: 83-106.
Rao, C. P., and Amini, Z. Z (1995) Faunal relationship to grain-size, mineralogy and geochemistry in recent temperate shelf carbonate, western Tasmania, Australia, Carbonates and Evaporites, 10: 114-123.
Rao, C. P., and Adabi, M. H (1992) Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia: Mar. Geology, 103: 249-272.
Rao, C. P (1996) Elemental composition of marine calcite from modern temperate shelf brachiopods, bryozoans and bulk carbonates,eastern Tasmania, Australia, Carbonates and Evaporites, 11.
Riding, R (2006) Microbial carbonates: the geological record of calcified bacterial algal mats and biofilms. Sedimentology, 47: 179-214.
Saffar, A., Mousavi, M. J., Torshizian, H., Javanbakht, M (2010) The investigation of Diagenetic processes and interpretation of paragenetic sequence of Tirgan Formation, Zavin section, NE of Iran, The 1 st International Applied Geological Congress ,Department of Geology,Islamic Azad University-Mashhad Branch, Iran, 26-28.
Sandullia, R., and Raspinib, A (2004) Regional to global correlation of lower Cretaceous (Hauterivian - Barremian) shallow – water carbonates of the southern Apennines (Italy) and Dinarides (Montenegro), southern Tethyan Margin. Sedimentary Geology, 165: 117 -153.
Samanckassu, E., Tresch, j., and Strasser, A (2005) Origin of Peloides in Early Cretceous deposits, Dorest South England Facies, 51: 264-273.
Schulz H. D, M Zabel (2006) Geochemistry Marine, 2th Ed., Springer. 280P.
Sharafi. M., Mahboubi, A., Moussavi-Harami, R., R., Mosaddegh, H., GharaieM. H. M (2014) Trace fossils analaysis of fluvial to open marine transitional sediments :Example from the Upper Devonian (Geirud Formation), Central Alborz, Iran. Palaeoworld, 23: 50-68.
Sibley, D. F. and Greeg, J. M (1987) Classification of dolomite rock Textures, Journal of Sedimentary Petroleum, 57: 967-975.
Smeerdijk-Hood, A. V., Wallace, M. V (2012) Synsedimentary diagenesis in a e, rygenian reef complex: ubi quitious Marine dolomite precipitation, sedimentary Geology, 255-256: 56-71.
Tucker, M. E (1991) Sedimentary Petrology, Blackwell scienctific Publication, 260P.
Tucker, M. E (1993) carbonate diagensis and sequence stratigraphy. In: Wright, V. P. (ed.), sedimentology Review, Blackwell Sci. Publ., Oxford, 51-72.
Veizer, j (1983) Trace elements and isotopes in sedimentary carbonates, Reviews in mineralogy and Geochimestry, 11: 265-299.
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S. , Goddris, y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G. and Strauss, H (1999) ⁸⁷Sr/⁸⁶Sr, C¹³  and O¹⁸    evolution of Phanerozoic seawater, Chemical Geology, 161: 59-88.
Warren, W. J., Dolomite (2000) Occurrence, evolution and economically important association, Earth science review, 52: 1-81.
Werner, M (2004) Carbonate ramp depositional environments.Geologic Seminar, University of Freberg, 10P.
Winefield, P. R., Nelson, C. S., and Hoddar, A. P. W (1996) Discriminating temperate carbonates and their diagenetic environments using bulk elemental geochemistry:a reconnaissance study based on New Zealand Cenozoic Limestones: Carbonates and Evaporites, 11: 19-31.