لایه‌های قرمز اقیانوسی کرتاسه، مدلی برای بررسی تغییرات سریع شرایط ژئوشیمیایی در محیط‌های رسوبی عمیق

نویسنده

استادیار گروه زمین‌شناسی، پردیس علوم، دانشگاه یزد، یزد

چکیده

بررسی رسوبات کربناته به سن آپتین در برش آب‌پخش در زون فارس داخلی نشان­دهنده وجود ضخامتی از رسوبات شیلی- آهکی به رنگ قرمز ارغوانی است که در عین وجود رخساره پلاژیک و عمیق شرایط محیط اکسیدان را نشان می‌دهد. داده‌‌های مربوط به اندازه‌گیری‌‌های عنصری توسط روش جذب اتمی نشان­دهنده افزایش عنصر آهن و عناصر وابسته دیگر همچون منگنز در این رسوبات است. آنالیز کانی‌شناسی با استفاده از روشXRD   نیز نشان داد اکسید آهن به فرم گوتیت در این رسوبات وجود دارد. از آنجا که بررسی‌‌های عنصری تایید کننده حاکم بودن شرایط دیاژنز دفنی در یک سیستم بسته در این رسوبات است، عامل ایجاد رنگ قرمز در این لایه‌ها مربوط به وجود کانی‌‌های آهن‌دار در زمان رسوب‌گذاری است. چنین رسوباتی تحت شرایط اکسیدان تشکیل شده که با شرایط تشکیل لایه‌‌های غنی از مواد آلی و رسوبات پلاژیک موجود در قسمت زیرین آن همخوانی ندارد. عامل ایجاد شرایط اکسیدان در یک محیط آنوکسیک و بدون اکسیژن، کاهش دما پس از رویداد آنوکسیک اقیانوسی است که این تغییرات در دمای آب منجر به افزایش پتانسیل اکسیدکنندگی آب‌‌های عمیق حوضه، تغییر در الگوی چرخش آب و در نهایت انتقال اکسیژن به این قسمت از حوضه شده است. با توجه به اینکه عامل کاهش دما، خروج حجم عظیمی از دی‌اکسیدکربن از اتمسفر به شکل رسوبات غنی از مواد آلی است، تشکیل این لایه‌‌های قرمز اقیانوسی در زمان کرتاسه به عنوان رویدادی متعاقب با رویداد آنوکسیک اقیانوسی در نظر گرفته می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Cretaceous Oceanic Red Beds (CORB), a model for study of rapid changes of geochemical condition in deep sedimentary environments

نویسنده [English]

  • S. M. A. Moosavizadeh
چکیده [English]

Study of Aptian sediments in the Interior Fars Province confirm existence of red shale beds intervals show pelagic facies and oxic environmental condition. Geochemical data (elemental and mineralogy analysis) release increasing in Fe and Mn and presence of goethite in these sediments. Since that geochemical data confirm diagenesis condition in a close burial system, the red color of these sediments can be attributed to iron bearing minerals that have been deposited in the basin. These sediment have been deposited in an oxidant condition which is completely different with previous organic rich sediments. The cause of the oxidant condition in deep oceanic environment is the reduction of temperature after the OAEs; the water temperature variation has led to an increase in the oxidation potential of deep water basins, change in the water circulation pattern and eventually transfer of oxygen to these areas. Considering that the temperature reduction factor is the release of a large volume of carbon dioxide from the atmosphere in the form of organic-rich sediments, formation of these red oceanic layers during the Cretaceous is considered as an event subsequent to the anoxic event of the ocean.

کلیدواژه‌ها [English]

  • Red Bed
  • Goethite
  • Dariyan Formation
  • Aptian
  • Zagros
مطیعی، ه (1372) چینه­نگاری زاگرس، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی، 306 ص.
موسوی‌زاده، م. ع (1398) بررسی روند تغییرات دمای دیرینه در نهشته‌های کربناته آپتین- آلبین در زون چین‌خورده-رانده زاگرس بر مبنای داده‌های ایزوتوپ اکسیژن، مجله پژوهش‌های چینه‌نگاری و رسوب‌شناسی، شماره 74، سال سی و پنجم، ص 55-72.
Alavi, M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229: 211-238.
Alavi, M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science, 304: 1-20.
Alavi, M (2007) Structures of the Zagros fold-thrust belt in Iran. American Journal of Science, 307: 1064-1095.
Alsharhan, A. S., Nairn, (1997) A Sedimentary basins and petroleum geology of the Middle East. Amsterdam: Elsevier. 371 p.
Arthur, M. A (1979) Origin of Upper Cretaceous multicolored claystones of the western Atlantic, in Tucholke, B.E., Vogt, P.R., et al., eds., Initial Reports of the Deep Sea Drilling Project. 43:417–420.
Arthur, M. A., Dean, W. E., Pratt, L. M (1988) Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature, 335: 714–717.
Barclay, R. S., McElwain, J. C., Sageman, B. B (2010) Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2. Nature Geoscience, 3 (3): 205–208.
Berberian, M. and King, G (1981) Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18: 210-265.
Cai, Y., Hu, X., Li, X., Pan, Y (2012) Origin of the red color in a red limestone from the Vispi Quarry section (central Italy): a high-resolution transmission electron microscopy analysis. Cretaceous Research, 28: 97–102.
Cornell, R.M. and Schwertmann, U (1966) The Iron Oxides. VCH Weinheim. 573 p.
Lurio, J. L., Frakes, L. A (1999) Glendonites as a paleoenvironmental tool: implications for Early Cretaceous high latitudes. Geochomica et Cosmochimica Acta, 63: 1039-1048.
Dickson, J. A. D (1966) Carbonate Identification and geneis as revealed by staining. Journal of Sedinemntary Petrology, 36: 441-505.
Ehrlich H. L., Newman D. K (2009) Geomicrobiologgy. Chapter 19: Geomicrobiology of Sulfur. Fifth Edition. Taylor and Francis Group, LLC. pp. 439-490.
Eren, M., Kadir, S (1999) Colour origin of upper Cretaceous pelagic red sediments within the Eastern Pontides, northeast Turkey. International Journal of Earth Sciences, 88 (3): 593–595.
Frakes, L. A., Francis, J. E., and Syktus, J. I (1992) Climate Modes of the Phanerozoic. Cambridge: Cambridge University Press. 290 p.
Ghasemi, A. and Talbot, C (2006) A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences, 26: 683-693.
Gűmbel, C.W (1861) Geognostische Beschreibung des bayerischen Alpengebirges und seines Vorlandes. Alps, Bavarian (Germany) 950 p.
Hay, W. W (2008) Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research, 29: 725–753.
Hu, X. M., Jansa, L., Wang, C. S., Sarti, M., Bak, K., Wagreich, M., Michalik, J., Sotak, J (2005) Upper Cretaceous oceanic red beds (CORBs) in the Tethys: occurrences, lithofacies, age, and environments. Cretaceous Research 26: 3–20.
Hu, X., Hu, X., Wagreich, M., Yilmaz, I. O (2012) Marine rapid environmental/climatic change in the Cretaceous greenhouse world. Cretaceous Research, 38: 40–51.
Hu, X., Scott, R. W., Cai, Y., Wang, C. and Melinte-Dobrinescu, M.C (2012) Cretaceous oceanic red beds (CORBs): Different time scales and models of origin. Earth-Science Reviews, 115: 217-248.
Jenkyns HC (2010) Geochemistry of oceanic anoxic events. Geochem Geophys Geosyst, 11(3): 3-38.
Kiipli, E., Kallaste, T. and Kiipli, T (2000) Hematite and goethite in Telychian marine red beds of the East Baltic. GFF, 122: 281-286.
Kuypers, M. M. M., Pancost, R. D., Sinninghe Damsté, J (1999) A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times. Nature, 399: 27–30.
Larson, R. L (1991) Geological consequences of superplumes. Geology, 19 (10): 963–966.
Li, X., Cai, Y., Xue, J (2009) Colour genesis of red shales in Cretaceous marine red beds from Gyangze, southern Tibet. Acta Mineralogica Sinica, 29 (3): 283–290.
Mansouri-Daneshvar P., Moussavi-Harami R., Mahboubi A., Gharaie M. H., Feizie A (2015) Sequence stratigraphy of the petroliferous Dariyan Formation (Aptian) in Qeshm Island and offshore (southern Iran). Petroleum Science, 12: 232–251
Moosavizadeh, M. A., Mahboubi, A., Moussavi-Harami, R., Kavoosi, M. A (2014) Early Aptian oceanic anoxic event (OAE 1a) in Northeastern Arabian Plate setting: an example from Dariyan Formation in Zagros fold–trust belt, SE Iran. Arabian Journal of Geosciences,7:4745–4756.
Moosavizadeh, M. A., Mahboubi, A., Moussavi-Harami, R., Kavoosi, M.A., Schlagintweit, F (2015) Sequence stratigraphy and platform to basin margin facies transition of the Lower Cretaceous Dariyan Formation (northeastern Arabian Plate, Zagros fold-thrust belt, Iran). Bulletine of Geosciences, 90(1): 154-172.
Mutterlose, J., Bornemann, A., Herrle, J (2009) The Aptian–Albian cold snap: evidence for“mid” Cretaceous icehouse interludes. Neues Jahrbuch für Geologie und Palaontologie–Abhandlungen, 252 (2): 217–225.
Sengor, A. C (1984) The Cimmeride orogenic system and the tectonics of Eurasia. In: Baker, V. R. (Ed.), Rethinking the Fabric of Geology. Geological Society of America Special Papers, 195: 1-74.
Scott, R. W., Oboh-Ikuenobe, F. E., Benson Jr., D. G., Holbrook, J.M (2009) Numerical age calibration of the Albian/Cenomanian boundary. Stratigraphy, 6: 17–32.
Sherkati, S. & Letouzey, J (2004) Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran. Marine and Petroleum Geology, 21(5): 535–554.
Štur, D (1860) Bericht űber die geologische űbersichts - Aufnahmed. Wassergebietes der Waag und Meutra. Geologische Reichsanstalt, Jahrbuch, 11: 17–149.
Vaziri-Moghadan, H., Kimiagari, M. & Taheri, A (2006) Depositional environment and sequence stratigraphy of the Oligo-Miocene Asmari Formation in SW Iran. Facies, 52: 41–51.
Vna Houten, F. B (1964) Origin of red beds—some unresolved problems, in Nairn, A. E. M., ed., Problems in Paleoclimatology: New York, Interscience, 647–661.
Wang, C., Huang, Y., Hu, X., Li, X (2004) Cretaceous oceanic redbeds: implications for paleoclimatology and paleoceanography. Acta Geologica Sinica—English Edition, 78 (3): 873–877.
Wang, C. S., Hu, X. M., Sarti, M., Scott, R. W., Li, X. H (2005) Upper Cretaceous oceanic red beds in southern Tibet: a major change from anoxic to oxic, deep-sea environments. Cretaceous Research, 26 (1): 21–32.
Wang, C., Hu, X., Huang, Y., Scott, R., Wagreich, M (2009) Cretaceous oceanic red beds (CORB): a window on global oceanic/climatic change. In: Hu, X., Wang, C., Scott, R.W., Wagreich, M., Jansa, L. (Eds.), Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins and Paleoceanographic/Paleoclimatic SignificanceSEPM Special Publication, 91: 13–33.
Wang, C., Hu, X., Huang, Y., Wagreich, M., Scott, R. W., Hay, W. W (2011) Cretaceous oceanic red beds as possible consequence of oceanic anoxic events. Sedimentary Geology, 235: 27–37.
 
 
  • تاریخ دریافت: 15 اسفند 1398
  • تاریخ بازنگری: 19 فروردین 1399
  • تاریخ پذیرش: 27 اردیبهشت 1399
  • تاریخ اولین انتشار: 27 اردیبهشت 1399