تفسیر ساختاری و محیط رسوبی سازند گچساران با تاکید بر توالی بخش 1 این سازند در میدان نفتی گچساران، فروافتادگی دزفول جنوبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا رسوب شناسی و سنگ شناسی رسوبی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران

2 استاد دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران

3 دانشجوی دکترا رسوب شناسی و سنگ شناسی رسوبی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران- شرکت ملی مناطق نفت خیز جنوب

4 شرکت ملی مناطق نفت خیز جنوب

چکیده

یکی از مهم­ترین واحدهای چینه­شناسی در حوضه رسوبی زاگرس ایران و کشورهای همجوار سازند تبخیری گچساران بوده که به عنوان مهم­ترین سنگ­پوش مخازن سازند آسماری از اهمیت اقتصادی بالایی برخورد است. این سازند در حدود 1200 تا 1600 متر در فروافتادگی دزفول جنوبی ضخامت داشته که در میدان نفتی گچساران توالی بخش 1 آن به ضخامت حدود 55 متر می­باشد. به منظور شناخت بهتر تغییرات سنگ­شناسی، فابریک­های رسوبی و محیط­رسوبی سازند گچساران در چاه X، میدان نفتی گچساران در فروافتادگی دزفول جنوبی مورد مطالعه قرار گرفت. عمدۀ فابریک­های رسوبی مورد مطالعه در این سازند تحت تاثیر فرآیند دیاژنز ناشی از تبدیل ژیپس به انیدریت بوده که از مهم­ترین آن­ها فابریک­های الواری، انترولیتک و بافت­های جریانی می­باشند. بر اساس مطالعات صحرایی و داده­های چاه پیمایی آن­چه در منطقه مورد مطالعه رخنمون یافته تاقدیسی برگشته بوده و تغییرات عمقی واحدهای مختلف حاکی از آن است که بخش 4 سازند گچساران هسته آن می­باشد و این برگشتی ناشی از کوتاه­شدگی صورت گرفته است. با توجه به آلوکم­ها، بافت، ساخـت و خصوصیات سنگ­شناسی مورد مطالعه در رسوبات این سازند سه رخساره اصلی کربنات، تبخیری و شیلی در این سازند مطالعه شد که حاکی از رسوب­گذاری آن­ها در یک پلت­فرم کربناته- تبخیری متشکل از کمربندهای رخساره­ای جزرومدی (سبخا و کفه­های نمکی) و لاگونی در زمان میوسن می­باشد. بر اساس مطالعات آنالیزهای ژئوشیمیایی، پراش پرتو ایکس و نیز مطالعات میکروسکوپ الکترونی در زمان تشکیل رسوبات مورد مطالعه سه مرحلۀ سیلابی، تغلیظ و خشک­شدگی در کانی­های تبخیری مورد مطالعه قرار گرفت. هم­چنین روند تغییرات مقدار برم در طول ستون چینه­شناسی حاکی از ورود و تبخیر متناوب آب دریا در زمان تشکیل تبخیری­های سازند گچساران در زمان رسوب­گذاری است.

کلیدواژه‌ها


عنوان مقاله [English]

Structural interpretation, diagenesis and depositional environment of the Gachsaran formation with emphasised on member 1 in Gachsaran oilfield, south Dezful embayment

نویسندگان [English]

  • M. Liaghat 1
  • M. H. Adabi 2
  • M. R. Nuraei Nedhad 3
  • E. Eghbalpour 4
1
2
3
4
چکیده [English]

The Gaschsaran Formation, is one of the major and important stratigraphic units in Iran, and is regarded as substantial Asmari cap rock thuse, is significant economically. Generally, the Gaschsaran Formation with a thickness of 1200 to 1600 m, is present in South of Dezful embayment. The studied area is located in the Gachsaran oilfield, which consists of the Gachsaran member 1 with a thickness of 40 m. This research is focused on lithological variations, depositional fabrics together with the depositional environment in the well No. x in the Gachsaran oil field. The main sedimentary fabrics, as a result of gypsum to anhydrite transformation, occurred in this formation during diagenetic processes and lath fabrics, as well as flow fabrics, present in this formation. Based on the field investigation along with well logging data, the studied area involved reversed anticline, and variations in units indicate member 4 as anticline core as a result of other strata shortening. Three carbonates, evaporite, and shale facies are recognized based on their allochems, fabrics, texture, and lithology in the studied section. The studied facies represent a carbonate-evaporite platform involving sabkha and salt pan, tidal flat and lagoonal depositional environments during Miocene. Geochemical analysis, X-Ray-EDX, and SEM data revealed freshwater flooding, evaporative concentration, and desiccation stages during evaporite deposition. The Br element variation along the stratigraphic column indicated water entrance and evaporation occurred during evaporite deposition in this formation.

کلیدواژه‌ها [English]

  • Gachsaran formation
  • Dezful embayment
  • Miocene
  • Diagenesis

حاجب، ر (1363) مطالعه بخش هفتم سازند گچساران در مناطق نفت­خیز، گزارش داخلی، بایگانی شرکت ملی مناطق نفت­خیز جنوب، پ-3883، 18ص.

مطیعی، ه (13۶4) پوش­سنگ، گزارش شماره پ-3932، 115ص.

مطیعی، ه (1374) زمین­شناسی ایران، زمین­شناسی ­نفت زاگرس 1 و 2، طرح تدوین کتاب، سازمان زمین­شناسی کشور، 1009 ص.

عبدالهی­فرد، ا (1385) مدل­های ساختاری جنوب خوزستان با استفاده ازداده­های لرزه­نگاری بازتابی، پایان­نامه دکترا، دانشگاه شهید بهشتی تهران، 174 ص.

نقشه زمین­شناسی 100000/1 گچساران، سازمان زمین­شناسی E 20841.

AbdollahieFard, I., Sherkati, S., McClay, K. and Haq, B. U (2019) Tectono-Sedimentary Evolution of the Iranian Zagros in a Global Context and Its Impact on Petroleum Habitats. In Developments in Structural Geology and Tectonics, 3: 17-28.

Adabi, M. H (2009) Multistage dolomitization of upper Jurassic mozduran formation, Kopet-Dagh Basin, ne Iran. Carbonates and Evaporites, 24(1): 16-32.
Adams, A. and Diamond, L. W (2019) Facies and depositional environments of the Upper Muschelkalk (Schinznach Formation, Middle Triassic) in northern Switzerland. Swiss journal of geosciences, 112(2-3): 357-381.
Aghdam, J. A. Raeisi, E. Zare, M. Forti, P. and Capaccioni, B (2013) Hydrogeology of non-salt Gachsaran formation in iran: an example from the Zagros range–tang Sorkh valley. Carbonates and evaporites, 28(3):309-319.
Alavi, M (2007) Structures of the Zagros fold-thrust belt in Iran American.J Sci, 307:1064–1095.
Alavi, M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its pro-foreland evolution. Am J Sci, 304:1–20
Al-Juboury, A. I. and T. McCann (2008) The Middle Miocene Fatha (Lower Fars) Formation, Iraq: Geoarabia, 13: 141–174.
Al-Murani, G. S. G (1986) Sedimentology and petrophysical aspects of the middle Miocene Jeribe Formation, East Baghdad fi eld, Iraq: doctoral thesis, University of Oxford, Oxford, 256 p.
Alsharhan, A. S. and Kendall, C. G. St. C (2002) Holocene coastal carbonates and evaporates of the southern Arabian Gulf and their ancient an alogues, Earth Science Reviews, 61: 191–243.
Alsharhan, A. S. and Whittle, G. L (1995) Carbonate-evaporite sequences of the Late Jurassic, southern and southwestern Arabian Gulf. AAPG bulletin, 79(11): 1608-1630.
Alizadeh, B. Maroufi, K. and Fajrak, M (2018) Hydrocarbon reserves of Gachsaran oilfield, SW Iran: Geochemical characteristics and origin. Marine and Petroleum Geology, 92: 308-318.
Amiri, M. Lashkaripour, G. R. Ghabezloo, S. Moghaddas, N. H. and Tajareh, M. H (2019) Mechanical earth modeling and fault reactivation analysis for CO2-enhanced oil recovery in Gachsaran oil field, south-west of Iran. Environmental earth sciences, 78(4): 112.
Bahadori, A. Carranza, E. J. M. and Soleimani. B (2011) Geochemical analysis of evaporite sedimentation in the Gachsaran Formation, Zeloi oil field, southwest Iran. Journal of geochemical exploration, 111(3): 97-112.
Bahroudi, A., and Koey, H. A (2004) Tectono-sedimentary framework of the Gachsaran Formation in the Zagros foreland basin, Marine and Petroleum Geology, 21: 1295-1310.
Benison, K. C. and Goldstein. R. H (2000) Sedimentology of ancient saline pan: an example from the Permian Opeche Shale, Williston Basin, North Dokota, U.S.A., Journal of Sedimentary Research, 70: 159-169.
Berberian, M (1995) Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics, 241(3-4): 193-224.
Biernacka, J. Borysiuk, K. and Raczynski, P (2005) Zechstein (Ca1) limestone-marl alternations from the North-Sudetic Basin Poland, depositional or diagenetic rhythms? Geological Quarterly, 49: 1–14
Bitzere, K (2004) Estimating paleogeographic, hydrological and climatic conditions in the upper Burdigalian Vallès-Penedès basin Catalunya, Spain, Geologica Acta, 2: 321-331.
Boggs, S (2016) Principles of Sedimentology and Stratigraphy. Pearson Prentice Hall, 660p.
Carozzi, A. V (1993) Sedimentology Petrology, Prentice Hall, 263 p.
Casas, E. and Lowenstein, T. K (1989) Diagenesis of salinepan halite: comparison of petrographic features of modern, Quaternary, and Permian halites, Journal of Sedimentary Petrolology, 59: 724–739.
Caselle, C., Bonetto, S. and Comina, C (2019) Comparison of laboratory and field electrical resistivity measurements of a gypsum rock for mining prospection applications. International Journal of Mining Science and Technology, 29(6): 841-849.
Censi, P., Sirota, I., Zuddas, P., Lensky, N., Merli, M., Saiano, F., Piazzese, D., Sposito, F. and Venturelli, M (2020) Trace element fractionation through halite crystallisation. Geochemical mechanisms and environmental implications. Science of The Total Environment, p.137926.
Colman-Sadd, S. P (1978) Fold development in Zagros simply folded belt, Southwest Iran. AAPG Bulletin, 62(6): 984-1003.
Dehaghani, A. H. S. Taleghani, M. S. Badizad, M. H. and Daneshfar, R (2019) Simulation study of the Gachsaran asphaltene behavior within the interface of oil/water emulsion: a case study. Colloid and Interface Science Communications, 33: 100202.
Delius, H. Kaupp, A, Muller, A. Wohlenberg, J (2001) Stratigraphic correlation of miocene to Plio-/Pleistocene sequences on the New Jersey shelf based on petrophysical measurements from ODP leg 174 A. Mar Geol, 175: 149–165.
Dill, H. G. Berner, Z. Stuben, D. Nasir, S., and Al-Saad, H (2005) Sedimentary, facies, mineralogy, and geoche- mistry of the sulphate bearing Miocene Dam Formationin Qatar, Sedimentary Geology, 174: 63–96.
Dunham, R. J (1962) Classification of carbonate rocks according to depositional texture. Amer. Ass. Petrol. Geol. Mem, 1: 108-121.
Eberli, G. P., Anselmetti, F., Kenter, J. A. M., McNeill, D. F., Melim, L. A (2001) Calibration of seismic sequence stratigraphy with cores and logs. Spec Publ SEPM, 70: 241–266
Ehrenberg, S. N., Svana, T. A (2001) Use of spectral gamma-ray signature to interpret stratigraphic surfaces in carbonate strata: an exampleEl Tabakh, M., Utha-Aroon, C., and from the Finnmark carbonate platform (Carboniferous-Permian) Barents Sea. AAPG Bulletin, 85: 295 308.
Falcon, N (1974) Southern Iran: Zagros Mountains. In: Spencer, A.,Ed., Mesozoic-Cenozoic orogenic belts, Geological society, London, special publication, 4: 199–211.
Falcon, N. L (1969) Problems of the relationship between surface structure and deep displacements illustrated by the Zagros Range. Geological Society, London, Special Publications, 3(1): 9-21.
Fard, I. A., Braathen, A., Mokhtari, M. and Alavi, S. A (2006) Interaction of the Zagros Fold–Thrust Belt and the Arabian-type, deep-seated folds in the Abadan Plain and the Dezful Embayment, SW Iran. Petroleum Geoscience, 12(4): 347-362.
Flügel, E (2010) Microfacies of carbonate rocks: analysis, interpretation and application, 2nd. Springer, Berlin, 984 p.
Folk, R. L (1973) Carbonate petrography in the post-Sorbian age. In Evolving concepts in sedimentology  Johns Hopkins University Press Baltimore, MD, 21: 118-158.
Ghazban, F (2007) Petroleum Geology of the Persian Gulf. Joint publication, Tehran University Press and National Iranian Oil Company, Tehran ,707 pp.
Gill, W. D., and Ala, M. A (1974) Sedimentology of Gachsaran Formation Lower Fars Series Southwest   Iran, AAPG, 56(10): 1965-1974.
Gorjian, M., Memarian, H., Moosavi, M. and Mehrgini, B (2013) Dynamic properties of anhydrites, marls and salts of the Gachsaran evaporitic formation, Iran. Journal of Geophysics and Engineering, 10(1): 015001.
Handford, R. C (1990) Halite depositional facies in a solar salt pond: a key to interpreting physical energy and water depth in ancient deposits? Geology, 18: 691–694.
Hardie, L. A (1984) Evaporates: Marine or no marine, American Journal of Sciences, 284: 193-240.
Isaji, Y., Yoshimura, T., Kuroda, J., Tamenori, Y., Jiménez-Espejo, F. J., Lugli, S., Manzi, V., Roveri, M., Kawahata, H. and Ohkouchi, N (2019) Biomarker records and mineral compositions of the Messinian halite and K–Mg salts from Sicily. Progress in Earth and Planetary Science, 6(1): 60.
James, G., A. and Wynd, J. G (1965) Stratigraphic nomenclature of Iranian oil consortium agreement area. AApG Bulletin, 49(12): 2182-2245.
Joudaki, M., Farzipour-Saein, A. and Nilfouroushan, F (2016) Kinematics and surface fracture pattern of the Anaran basement fault zone in NW of the Zagros fold–thrust belt. International Journal of Earth Sciences, 105(3): 869-883.
Khan, R., Al Hanaee, A., Al Tameemi, K., Kurniawan, R., Omonigho, N., Gueddoud, A., Abdelaal, A. and Vantala, A (2019) November. Characterization of Unique Miocene Gachsaran Formation in Relation to Prospective Shallow Biogenic Gas Resources Across Onshore Abu Dhabi, United Arab Emirates. In Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers.
 Kennard, J., M. Allen, P,., Kirk, R. B (1999) Sequence stratigraphy: a review of fundamental concepts and their application to petroleum exploration and development in Australia. J Aust Geol Geophys,  17: 77–104.
Le Garzic, E., Vergés, J., Sapin, F., Saura, E., Meresse, F. and Ringenbach, J. C (2019) Evolution of the NW Zagros Fold-and-Thrust Belt in Kurdistan Region of Iraq from balanced and restored crustal-scale sections and forward modeling. Journal of Structural Geology, 124: 51-69.
Lowenstain, T. K., and Hardie, L. A (1985) Criteria for the recognition of salt-pan evaporate, Sedimentology, 32: 627-644.
Martin Chivelet, j., Ramirez, J., Tronchetti, G., and Babinot, J. F (1995) Paleoenvironment and evolution of the upper Masstrichtian platform in the Bethic contintal margin, SE Spain, Palaeogeography, Palaeoclimatology, Palaeoecology, 119: 1-191.
McQuillan, H (1985) Fracture-controlled production from the Oligo-Miocene Asmari Formation in Gachsaran and Bibi Hakimeh fields, southwest Iran. In Carbonate petroleum Reservoirs, 511-523.
McQuillan, H (1973) Small-scale fracture density in Asmari Formation of southwest Iran and its relation to bed thickness and structural setting. AAPG Bulletin, 57(12): 2367-2385.
Mehrgini, B. Memarian, H., Dusseault, M. B., Ghavidel, A. and Heydarizadeh, M (2016) Geomechanical characteristics of common reservoir caprock in Iran (Gachsaran Formation), experimental and statistical analysis. Journal of Natural Gas Science and Engineering, 34: 898-907.
Melvin, J. L (1991) Evaporates, Petroleum and Mineral Resources, Elsevier Science Publishing Company, 556p.
Mahmoodabadi, R. M (2020) Facies analysis, sedimentary environments and correlative sequence stratigraphy of Gachsaran formation in SW Iran. Carbonates and Evaporites, 35(1): 1-28.
Michalzic, D (1996) Lithofacies, diagenetic spectra and sedimentary cycles of Messinian Late Miocene-evaporate in SE Spain, Sedimentary Geology,106: 203-222.
Motamedi, H. and Gharabeigli, G (2019) Structural Style in the Fars Geological Province: Interaction of Diapirism and Multidetachment Folding. In Developments in Structural Geology and Tectonics, 3: 145-160
Moore, C. Wade, W (2013) Carbonate reservoirs: porosity, evolution and diagenesis in a sequence stratigraphic framework: porosity evolution and diagenesis in a sequence stratigraphic framework, 2nd. Elsevier, Amsterdam, 374 p.
Nowroozi, A. A (1972) Characteristic periods of fundamental and overtone oscillations of the earth following a deep-focus earthquake. Bulletin of the Seismological Society of America, 62(1): 247-274.
O’brien, C. A. E (1950) Tectonic problems of the oilfield belt of southwest Iran. In Proceedings of the 18th International Geological Congress, Great Britain, 6: 45-58.
Orti, F., and Salvany, j. M (2004) Coastal salina evaporates of the Triassic-Liassic boundary in the Iberian Peninsula: the Alacon borehole, Geological Acta, 2(4):291-304.
Peretsman, G., and Holser, W. T (1988) Geochemhstry of Moroccean evaporates in the setting of the North Atlantic rift, Journal of American Eearth Science, 7(2): 375-383.
Rahimi, E. Asgari, G., Shekarian, Y. and Nakini, A (2019) Investigations of Natural Bitumen mineralization in Gilan-e-Gharb exploration block, Iran. The International Journal of Engineering and Science (IJES), 8(5): 55-68.
Rezaee, P. and Salari, S (2016) Petrography and mineralgy of gachsaran formation in west of Bandar-e-Abbas, Kuh-e-Namaki Khamir section, south of Iran. Journal of Fundamental and Applied Sciences, 8(2): 956-969.
Rosen, M. R (1994) The importance of ground water in playas: a review of classifications and the sedimentology and hydrology of playas, Geological Society of America, Special Paper, 289: 1–18.
Saein, A. F. ed (2018) Tectonic and Structural Framework of the Zagros Fold-thrust Belt. Elsevier, 310p.
Schurrenberger, D., Russell, J. and Kelts, K (2003) Classification of lacustrine sediments based on sedimentary components, Journal of Paleolimnology, 29: 141-154.
Schereiber, B. C (1998) Sedimentology of the Ceretaceous Maha Sarakham evaporites in the Khorat Plateau of northeastern Thiland, Sedimentary Geology, 123: 31-62.
Sepehr, M. and Cosgrove, J. W (2005) Role of the Kazerun Fault Zone in the formation and deformation of the Zagros Fold Thrust Belt, Iran. Tectonics, 24(5): 1-13.
Scerri, S (2019) Sedimentary evolution and resultant geological landscapes. In Landscapes and Landforms of the Maltese Islands Springer Cham, 31-47.
Seyitoğlu, G., Esat, K., Kaypak, B., Toori, M. and Aktuğ, B (2019) Internal Deformation of Turkish–Iranian Plateau in the Hinterland of Bitlis–Zagros Suture Zone. In Developments in Structural Geology and Tectonics, 3: 161-244.
Sharland, P. R., Archer, R., Casey, D. M., Davies R. B., Hall, S. H., Heward, A. P., Horbury, A. D., Simmons, M. D (2001) Arabian Plate Sequence Stratigraphy. Geo Arabia Special Publication 2, Gulf PetroLink, Bahrain, 371 p.
Setudehnia, A (1972) The Mesozoic sequence in south-west Iran and adjacent areas. J Pet Geol, 1: 3–42.
Shinn, E. A (1983) Tidal flat environment; In Scholle, P. A., Bebout, .G., and Moore, C. H. (eds.), Carbonate Depositional Environments, AAPG Mem, 33: 172-210.
Sibly, D. F., and Greeg, J. M (1987) Clacification of dolomite rock texture, Journal of Sedimentary Petroleum, 57: 967-975.
Soleimani, B., Bahadori, A (2015) The Miocene Gachsaran formation evaporite cap rock, Zeloi oilfield, SW Iran. Carbonates Evaporites, 30: 287–306.
Spencer, R. J., and Lowenstein, T. K (1990) Evaporate.In; Mcllreath., I. A., Morrow, D. W. (eds), Diagenesis, Geoscience Canada Reprint Series, 4: 141-164.
Stöcklin, J (1968) Salt deposits of the Middle East, in Saline: Geol. Soc. America Spec, 88: 157-181.
Sun. S. Q., and M. Esteban (1994) Paleoclimatic controls on sedimentation, diagenesis, and reservoir quality – Lessons from Miocene carbonates: American Association Petroleum Geologists – Bulletin, 78: 519–543.
Taberner, C., Cendon, D. I., Pueyo, J. J., and Ayora, C (2000) The use of environmental markers to distinguish marine vs continental deposition and to quantify the significance of recyclingin evaporate basin, Sedimentary Geology, 137: 213–240.
Tleel, J. W (1973) Surface geology of the Dammam Dome, Eastern Province, Saudi Arabia: American Association Petroleum Geologists – Bulletin, 57: 558–576.
Tucker, M. E (2009) Sedimentary petrology: an introduction to the origin of sedimentary rocks. John Wiley & Sons, 272p.
Tucker, M. E (1999) Sabkha cycles, stacking and controls, Gachsaran (Lower Fars/Fata) Formation, Miocen, Mesopotamian basin, Iraq, Neues jahrbuch Geologisch und Plaonatologisch Abhandlung, 124: 45-69.
Tucker, M. E. and Wright, V. P (1990) Carbonate platforms: facies evolution and sequences. Int Ass Sed, 2: 328.
Twiss, R. J., and Moores, E. M (1992) Structural Geology, W.H. Freeman and company, New York, 532p.
Vergés, J., Emami, H., Garcés, M., Beamud, E., Homke, S. and Skott, P (2019) Zagros foreland fold belt timing across Lurestan to constrain Arabia–Iran collision. In Developments in structural geology and tectonics, 3: 29-52.