تاثیر فرسایش خاک و فرونشست زمین در مجاورت خطوط انتقال در دشت اشتهارد با استفاده از مطالعات رسوب شناسی و ژئوالکتریک

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار گروه زمین شناسی، دانشکده علوم زمین، دانشگاه خوارزمی، تهران

چکیده

فرسایش خاک و فرونسشت زمین در ایران به مقوله­هایی آشنا و مخاطره­انگیز تبدیل شده­اند. به تازگی شریان­های حیاتی محیط­های شهری و بین­شهری از جمله خطوط انتقال برق سراسری با عوارض ثانویه فرسایش خاک و فرونسشت زمین مواجه شده­اند. در این تحقیق محل عبور خط انتقال برق فشار قوی و مارن­های متفاوت بالادستی (واحدهای M1، M2 و M3) در مسیر اشتهارد به بویین­زهرا مورد مطالعه رسوب­شناسی و ژئوالکتریک قرار گرفته است. آزمایش­های دانه­بندی غربال و هیدرومتری، کلسیمتری، هدایت­الکتریکی، حدود آتربرگ، تعیین عناصر و تشخیص نوع کانی­های رسی انجام شد. پدیده­های فرسایش خاک منطقه عبارتند از: ورقه­ای، شیاری، آبراهه­ای و خندقی که در مارن­های قرمز بالایی و کواترنر دیده می­شوند. مارن‌ها دارای خصوصیاتی از جمله فرسایش‌پذیری بالا، دارای سیلت فراوان، غیرچسبنده، کاتیون­های آلکالی و آنیون­های محلول هستند. نتایج نشان داده­اند که یک لایه سیلتی به ضخامت حدود یک متر در زیر لایه سطحی متشکل از رس متراکم مونتموریلونیتی و در روی لایه ماسه­رسی قرار داشته و بدلیل فرسایش­پذیری بالا باعث ایجاد تونل­ها و خندق­های بزرگی شده­اند که به سمت دکل­های برق پیشروی نموده­اند. مطالعات ژئوالکتریک علاوه بر نمایش گسترش این لایه در منطقه، لایه­های ماسه­ای در اعماق حدود 45متر به پایین را نیز نشان داد. علت اصلی فرونسشت زمین در این منطقه برداشت بیش از حد آب­های زیرزمینی توسط مجمتع فولاد می­باشد که به ترک­های سطح زمین ناشی از فرسایش خاک پیوسته است. مطالعات ژئوالکتریک علاوه بر اندازه ذرات خاک، موقعیت حفرات زیرزمینی، لایه میانی سیلتی و مرطوب را نشان داده است که به فرسایش حساس می­باشد. 

کلیدواژه‌ها


عنوان مقاله [English]

Soil erosion and land subsidence effects in the vicinity of power transport lines in Eshtehard Plain using sedimentology and Geoelectric studies

نویسنده [English]

  • Kh. Rezaei
چکیده [English]

Soil erosion and land subsidence in Iran have become known and important issues. Recently, the vital arteries of urban and interurban areas include the nation's power line face with secondary effects of soil erosion and land subsidence. In this research, the place of power line and different upstream marls (M1, M2, M3 units) from Eshtehard to Bouin-Zahra area were studied from a sedimentology erodibility and geoelectric point of view. In the laboratory, granulation, calcimetry, electrical conductivity, Aterberg limits, type and the amount of different elements and clay minerals were determined. The types of erosion include surface, furrow, stream, and trench erosion on the Upper Red Formation deposits and Quaternary sediments. The results show that the area is covered by highly erodible marl and contains abundant non-cohesive silt particles, alkali cations, and soluble anions. A silty layer about one-meter-thick is located on the surface substrate consisting of dense clay and on the clayey sand layer and due to high erosion, they cause large tunnels and gullies that go towards the electric towers. The clay mineral of this layer is montmorillonite with highly sensitive to soil erosion factors. Geoelectric studies show this layer as well as sandy layers deposited in 45m and more depths. The main reason for the general subsidence of this region can be considered as water extraction for the steel industry in the Eshtehard region, which has been used as a driving force to create cracks and erosive cracks in the soil.

کلیدواژه‌ها [English]

  • Sediment
  • Erosion
  • Vital arteries
  • Geoelectric
  • Eshtehard
رفاهی، ح (1385) فرسایش آبی و کنترل آن، انتشارات دانشگاه تهران.
طالبی، آ (1390) بررسی متغیرهای فیزیکی و شیمیایی مارن­ها و تاثیر آن بر اشکال مختلف فرسایشی در حوزه آبخیز حبلهرود، هفتمین کنفرانس زمین­شناسی مهندسی و محیط زیست ایران، شاهرود، دانشگاه صنعتی شاهرود.
میرزازاده، ص.، م.، کریم­پور ریحان، م. ر.، اسپهبد (1391) رسوب­شناسی و تعیین شاخص‌های فرسایش‌پذیری مارن‌های سازند قرمز بالایی در ناحیه ایوانکی، فصلنامه علمی پژوهشی زمین­شناسی محیط­زیست، سال ششم، شماره 19.
Beamish, D., Clark, T. D. G., Clarke, E., and Thomson, A. W. P (2002) Geo-magnetically induced currents in the UK: geomagnetic variations and surface electric fields, J. Atmos. Solar Terr, 64: 1779– 1792.
Bersezio, R.,  Giudici, M., Mele. M (2007) Combining sedimentological and geophysical data for high-resolution 3-D mapping of fluvial architectural elements in the Quaternary Po plain (Italy), Sedimentary Geology,  202, Issues, 1(2): 230-248.
Bianchetti, R. L (2001) Survey method and evaluation techniques, in: Peabody’s Control of Pipeline Corrosion, Second Edition, edited by: Bianchetti, R. L., NACE International, Houston, 65–100.
Boteler, D. H (2000)  Geomagnetic effects on the pipe-to-soil potentials of a continental pipeline, Adv. Space Res, 26: 15–20,.
Fernberg, P. A., C. Samson, D. H. Boteler, L. Trichtchenko, and P. Larocca (2007) Earth conductivity structures and their effects on geomagnetic induction in pipelines, Annales Geophysics, 25: 207-218.
Haas, F., Hilger, L., Neugirg, f., Umstädter, K., Breitung, Ch., Fischer, P., Hilger, P., Heckmann, T., Dusik, J., Kaiser, A., Schmidt, J., Della- Seta, M., Rosenkranz, R., Becht, M (2016) Quantification and analysis of geomorphic processes on a recultivated iron ore mine on the Italian island of Elba using long-term ground-based lidar and photogrammetric SfM data by a UAV, Nat. Hazards Earth Syst. Sci, : 1269–1288.
Hosl, R., Strauss, P (2015) Conservation tillage practices in the alpine forelands of Austria Arethey effective?, Catena, 44-51.
Mathys, N., Klotz, S., Esteves, M., Descroix, L., Lapetite, J. M (2005) Runoff and erosion in the Black Marls of the French Alps: Observations and easurements at the plot scale, Catena, 63: 261-281.
Ochoa-Cueva, P., Fries, A., Montesinos, P.,  Rodríguez-Díaz, J., Boll, J (2013) Spatial estimation of soil erosion risk by land-cover change in the Andes of southern Ecuador, land degradation & development.
Reynold, J. M (1997) an Introduction to Applied and Environmental Geophysics, John Willey & Sons, New York.
Sumarganal, L (2002) Application Methods VLF for Mapping Contamination of Contaminant at TPA Pasir Impun Bandung. Proceeding PIT HAGI ke-28.
Simpson, F. and Bahr, K (2005) Practical magneto-tellurics, Cambridge University Press, New York.
Sinha, R.,  Ahmad, J.,Gaurava, K.,  Morin, G (2014) Shallow subsurface stratigraphy and alluvial architecture of the Kosi and Gandak mega fans in the Himalayan foreland basin, India, Sedimentary Geology, 301: 133-149.
Šujan, M., Braucher, R., Šujan, M., Hók, J., Povinec, P. P., Šipka, F. ,  Team, A., Rugel, G., Scharf, A (2019) The tectono-sedimentary evolution of a major seismogenic zone with low slip rate activity: A geo-chronological and sedimentological investigation of the Dobrá-Voda Depression (Western Carpathians), Sedimentary Geology, 383: 248-267.