پتروگرافی و ژئوشیمی ماسه سنگ های سازند پادها در برش آسو، بلوک لوت، خاور ایران مرکزی: کاربردی برای تحلیل خاستگاه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی گروه زمین شناسی، دانشکده علوم، مجتمع آموزش عالی گناباد، گناباد

2 دانشجوی دکترا رسوب شناسی و سنگ شناسی رسوبی، گروه زمین شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد

3 دانشجوی دکترا رسوب شناسی و سنگ شناسی رسوبی، گروه زمین شناسی، دانشکده علوم، دانشگاه بوعلی سینا، همدان

چکیده

در این پژوهش، پتروگرافی و ژئوشیمی ماسه­سنگ­های سازند پادها  (دونین پیشین ـ میانی) در برش آسو، 40 کیلومتری خاور گناباد واقع در بلوک لوت مورد بررسی قرار گرفته است. سازند پادها در بـرش مورد مطالعه 210 متر ضخامت دارد و از سنگ­های سیلیسی آواری تشـکیل شـده است. پس از مطالعه صحرایی تعداد 30 نمونه ماسه­سنگ متوسط دانه برای مطالعات پتروگرافی و نقطه شماری و 10 نمونه ماسه­سنگی برای تجزیه و تحیل ژئوشیمیایی انتخاب شدند. نتایج مطالعات کانی­شناسی نشان می­دهد که کوارتـز تک­بلور فـاز اصلی و کانی­های زیرکن و تورمالین فاز فرعی را تشکیل می­­دهند. بر اساس داده­های نقطه شماری، ترکیب این ماسه­سنگ­ها از نوع کوارتزآرنایت و تا حدودی ساب­لیتارنایت شناسایی شده است. شواهد پتروگرافی از جمله فراوانی کوارتزهای منوکریستالین با خاموشی مستقیم و گردشدگی خوب، نبود پلاژیوکلاز و مقدار خیلی کم فلدسپات پتاسیک و کانی­های فرومنیزین، سیمان سیلیسی رورشدی، حضور دانه­های زیرکن و تورمالین گردشده موید اشتقاق رسوبات از بخش­های کراتون داخلی طی چرخه­های مجدد رسوبی است. علاوه برآن، استفاده از آنالیز مدال ذرات آواری و نمودارهای ((Qm95.5, F0.8, Lt3.6 و (Qt99.1, F0.8, L0) نیز از این منشا حمایت  می­کند. براساس داده­های ژئوشیمیایی در دیاگرام­های تفکیک کننده تکتونیکی ماسه­سنگ­های سازند پادها بر روی حاشیه قاره­ای غیرفعال نهشته شده­اند. این مطالعات نشان می­دهند که نهشته­های مورد مطالعه به احتمال زیاد در حد فاصل تبدیل حاشیه ریفتی به حاشیه غیرفعال پالئوتتیس نهشته شده­اند.

کلیدواژه‌ها


عنوان مقاله [English]

Petrography and geochemistry of sandstones of the Padeha Formation in Aso section; Lut bluck, eastern central Iran, implication for provenance analysis

نویسندگان [English]

  • Y. Nasiri 1
  • S. Zirjanizadeh 1
  • S. Kh. Forouzandeh 2
  • S. Taghdisi Nikbakht 1
  • M. Sedaghatnia 3
چکیده [English]

In this research, petrography and geochemistry of the sandstones of Padeha formation (Early-Middle Devonian) in Asu section, 40 km eastern Gonabad, located in Lut block have been studied. In this section, the thickness of Padeha formation is 210 m which is composed of siliclastic rocks. After field studies, 30 medium-grained sandstone samples were selected for point-counting and 10 sandstone samples were selected for geochemical analysis. The results of mineralogical studies show that monocrystalline quartz is the main phase and zircon and tourmaline minerals are the secondary phase. Based on the calculated percentages of point counting data, the composition of these sandstones has been detected as quartzarenite and sublitharenite. Petrographical evidence, such as, well rounded monocrystaline quartzs with straight extinction, lacking of plagioclase and low percentages of K-feldspar, ferromagnesian minerals, overgrowth silica cement, existence of rounded zircon and tourmaline imply craton interior and sediment recycled provenance. Moreover, using modal analysis data, (Qm95.5, F0.8, Lt3.6) and (Qt99.1, F0.8, L0) diagrams support this provenance. Based on geochemical data in discriminating tectonic diagrams, the Padeha Formation sandstones are deposited on a continental passive margin. These studies indicate that the studied sediments are likely deposited in the transition between the transformations of rifted margin to passive continental margin of Paleo-Tethys.

کلیدواژه‌ها [English]

  • Geochemistry
  • Modal analysis
  • Tectonic provenance
  • Parent rock weathering
  • Padeha Formation
حسینی، م.، جعفرزاده، م.، طاهری، ع.، زندمقدم؛ ح (1398) پتروگرافی و ژئوشیمی سنگ­های رسوبی سیلیسی- آواری سازند پادها دربرش خوش­ییلاق، البرز شرقی: کاربردی برای تحلیل خاستگاه. نشریه پژوهش­های چینه­نگاری و رسوب­شناسی. شماره 75(2)، ص 1-24.
شرفی، م.، موسوی­حرمی، ر.، محبوبی، الف.، جعفرزاده، م (1397) پتروگرافی و ژئوشیمی ماسه­سنگ­های سازند جیرود، کاربرد در تعیین خاستگاه و جایگاه زمین­ساختی. دوفصلنامه رسآوب­شناسی کاربردی، دوره 6، شماره 12، ص 24-1.
سعیدی، الف.، ر.، محبوبی، الف.، موسوی­حرمی، س، ر.، محمودی­قرایی، م، ح (1397) برخاستگاه سازند سیلیسی آواری پسته­لیق (پالئوسن زیرین) در برش چهچهه شمال شرق ایران. دوفصلنامه رسوب­شناسی کاربردی، دوره 6، شماره 11، ص 24-1.
Aharipour, R., Moussavi, M. R., Mosaddegh, H., Mistiaen, B (2010) Facies features and
paleoenvironmental reconstruction of the Early to Middle Devonian syn-rift volcano-sedimentary succession (Padeha Formation) in the Eastern-Alborz Mountains, NE Iran, Facies, 56 : 279-294.
Alavi, M (1991) Tectonic map of the Middle East. Geological Survey of Iran. Tehran.
Amireh, B. S (1991)  Mineral composition of the Cambrian–Cretaceous Nubian series of Jordon: provenance, tectonic setting and climatological implication. Sedimentary Geology, 71: 99–119.
Armas, P., Moreno, C., Sánchez, M. L., González, F (2014) Sedimen tary palaeoenvironment, petrography, provenance and diagenetic inference of the Anacleto Formation in the Neuquén Ba sin, Late Cretaceous, Argentina. Journal of South American Earth Sciences, 53: 59–76.
Asiedu, D. K., Agoe, M., Amponsah, P. O., Nude, P. M., Anani, C. Y (2019) Geochemical constraints on provenance and source area weathering of metasedimentary rocks from the Paleoproterozoic (~2.1 Ga) Wa-Lawra Belt, southeastern margin of the West African Craton. Geodinamica Acta, 31 (1): 27–39.
Bagheri, S. and Stampfli, G. M (2008) The Anarak, Jandaq and Posht-e-Badam metamorphic
complexes in central Iran: new geological data, relationships and tectonic
implications. Tectonophysics, 451(1-4): 123-155.
Basu, A (2003)  A perspective on quantitative provenance analysis. In: Valloni, R., Basu, A. (Eds.), Quantitative Provenance Studies in Italy, Memorie Descrittive della Carta Geologica dell’Italia,  61: 11 – 22.
Basu, A (1985) Reading provenance from detrital quartz. In: Zuffa, G. G. (Ed.), Provenance of Arenites, Reidel Publishing Company, 407: 231– 247.
Basu, A., Young, S. W., Suttner, L. J., James, W. C., Mack, G. H (1975)  Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation, Journal of  Sedimentary Petrology, 45: 873– 882.
Berberian, M., King G. C. P (1981) Toward a paleogeography and tectonic evolution of Iran, Canadian Journal Earth Sciences, 18: 210-265.
Bhatia, M. R (1983) Plate tectonics and geochemical composition of sandstones, Journal of Geology, 91: 611–627.
Blatte, H (1967) Provenance determination and recycling of sediments, Journal of Sedimentary Petrology, 37: 1031-1034.
Boulin, J (1991) Structures in southwest Asia and evolution of the eastern Tethys, Tectonophysics, 196: 211-268.
Condie, K. C., Lee, D., Farmer, G (2001) Tectonic setting and provenance of the Neoproterozoic Unit Mountain and Big Cottonwood group, northern Utha: constraints form geochemistry, Nd isotops, and detrital modes, Sedimentary Geology, 142: 443-464.
Crook, K. A. W (1974) Lithogenesis and geotectonics: the significance of compositional cariations in flysch arenites (graywackes). In: Dott, R.H. Jr., Shaver, R.H. (Eds.), Modern and ancient geosynclinal sedimentation, Society for Sedimentary Geology Special Publication, 19: 304–310.
Cullers, R. L (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implication for provenance and metamorphic studies, Lithos, 51: 181-203.
Derakhshi, M., Ghasemi, H (2015) Soltan Maidan Complex (SMC) in the eastern Alborz‌ structural zone, northern Iran: magmatic evidence for Paleotethys development, Arabian Journal of Geosciences, 8: 849–866.
Dickinson W. R., Interpreting detrital modes of greywacke and arkose, Journal of Sedimentary Petrology, 40: 695–707.
Dickinson, W. R (1985) Interpreting provenance relation from detrital modes of sandstones. In: Zuffa, G. G. (Ed.), Provenance of Arenites, Reidel Publishing Company, 407: 333–363.
Dickinson,  W. R., Beard,  L. S., Brakenridge,  G. R., Erjavec,  J. L., Ferguson,  R. C., Inman,  K. P (1983a)  Provenance of North American Phanerozoic sandstones in relation to tectonic setting, Geological Society of America Bulletin, 94: 222–35.
Dickinson, W. R., Suczek, C (1979) Plate tectonics and sandstone composition, American Association of Petroleum Geologists Bulletin, 63: 2164–2182.
Dickinson, W. R (1985) Interpreting Provenance Relations from Detrital Modes of Sandstones. In: Provenance of Arenites (eds. G. G. Zuffa): 333–363. Springer, Dordrecht (Reidel Publishing Company).
Dickinson, W. R., Suczek, C. A (1979) Plate tectonics and sandstone compositions. AAPG Bul letin, 63: 2164–2182.
Fleming, E., Flowerdew, M. J., Smyth, H. R., Scott, R. A., Morton, A. C., Omma, J. E., Frei, D., Whitehouse, M. J (2016) Provenance of Triassic sandstones on the southwest Barents Shelf and the implication for sediment dispersal patterns in northwest Pangaea. Ma rine and Pe tro leum Ge ol ogy, 78: 516–535.
Folk, E (1980) Petrography of Sedimentary Rocks, Hemphill Publishing Company, 182 pp.
Grantham, J. H., Velbel, M. A (1988) The influence of climate and topography on rock fragment abundance in modern fluvial sands of the southern Blue Ridge Mountains, north Carolina, Journal of Sedimentary Petrology, 58: 219-227.
Hosseini-Barzi, M., Saeedi, M (2011) Tectonic Provenance of Padeha Formation Sandstones in Samirkooh Section, Central Iran: with Refrence to Influence of Diagenetic Processes on Sandstones Composition, Scientific Quarterly Journal Geosciences, 20(78): 147-158. [In Persian with English abstract].
Ishiga, H., Dozen, K., Sampei, Y (1999) Geochemical constraints on marine invasion and provenance change related to the opening of the Japan Sea: an example from the Lower Miocene shales in the Hoda section, Shimane Peninsula, SW Japan, Journal of Asian Earth Sciences, 17: 443-457.
Joachimski, M. M., Breisig, S., Buggisch, W., Talent, J. A., Mawson, R., Gereke, M., Morrow, J. R., Day, J., Weddige, K (2009) Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth and Planetary Science Letters, 284: 599–609.
Jones, P. C (1972) Quartzarenite and litharenite facies in the fluvial forland deposits of the Trenchard group (Westphalian), Forest of Dean, England, Sedimentary Geology, 8: 177-198.
Karimpour, M. H., Malekzadeh Shafaroudi A., Hidarian Shahri, M. R., Askari, A (2007) Min-eralization, alteration, and geochemistry of Hired Au-Sn prospect area, South Khora-san province. Iran J Crystalloger Miner, 15: 67–90 (in Persian with English abstract).
Khazaei, E., Mahmoudy-Gharaie, M. H., Mahboubi, A., Moussavi-Harami, R., Taheri, J (2018) Petrography, Major and Trace Elemental Geochemistry of the Ordovician-Silurian Siliciclastics in North of Tabas Block, Central Iran: Implications for Provenance and Paleogeography. Journal of Sciences, Islamic Republic of Iran, 29(2): 129 – 142.
Kroonenberg, S. B (1994)  Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments, Proceedings of the 29th International Geological Congress Part A, 69–81.
Krynine, P. D (1940) Petrology and geneses of the third Bradforf Sand, Pennsylvanian State College Mineral Industries Experiments Station Bulletin, 29, 134pp.
Magnien, A., Salahshurian, M., Ternet, Y (1983) Geological Map of Iran. 1:250,000 Roum, Geological Survey of Iran.
Mahavaraju, J (2015) Geochemistry of Late Cretaceous sedimentary rocks of the Cauvery Basin, South India: constraints on paleoweathering, provenance, and end Cretaceous environments. Chemostratigraphy, 8: 185–214.
Malekzadeh Shafaroudi, A., Karimpour, M. H., Stern, C. R (2015) The Khopik porphyry copper prospect, Lut Block, Eastern Iran: Geology, alteration and mineralization, fluid inclusion, and oxygen isotope studies, Ore Geology Reviews, 65: 522-544.
McBride, E. F (1985) Diagenetic processes that affect provenance determination in sandstone. In Zuffa G. G. (Ed.), Provenance in Arenites, Reidel Publishing Company, 407: 95-113.
Mehring, J. L., McBride, E. F (2007) Origin of modern quartzarenite beach sands in a temperate climate, Florida and Alabama, USA, Sedimentary Geology, 201: 432-445.
Moghadam, H. S. Li, X. H. Griffin, W. L. Stern, R. J. Thomsen, T. B. Meinhold, G. Aharipour, R.
and O'Reilly, S. Y (2017) Early Paleozoic tectonic reconstruction of Iran: Tales from
detrital zircon geochronology. Lithos, 268: 87-101.
Nesbitt, H. W., Young G. M (1982) Early Proterozoic climate and plate motions inferred from major element chemistry of lutites, Nature, 299: 715–717.
Ogg, J. G., Ogg, G. M., Gradstein, F. M (2016) A Concise Geologic Time Scale. Elsevier, 229 pp.
Peng, Y., Zhang, Y., Xing, E., Wang, L (2020) Provenance and tectonic signifcance of the
Zhongwunongshan Group from the Zhongwunongshan Structural Belt in China: insights from zircon geochronology. Open Geoscience, 12: 25–43.
Pettijohn, F. J., Potter, P. E., Siever, R (1987) Sand and Sandstone, 2nd Ed, Springer, New York, 553 pp.
Potter, P. E., South America and a few grains of sand: Part 1– beach sands, Journal of Geology, 94: 301–319.
Rieser, A. B., Neubauer, F., Liu, Y., Ge, X (2005) Sandstone provenance of north-western sectors of the intracontinental Cenozoic Qaidam basin, western China: tectonic vs. climatic control. Sedimentary Geology, 177: 1–18.
Roser, B. P., Korsch, R. J (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio, Journal of Geology, 94: 635–650
Roser, B. P., Korsch, R. J (1988) Provenance signature of sandstone-mudstone suite determined using discriminate function analysis of major element data, Chemical Geology, 67: 119–139.
Ruban, D. A., Al-Husseini, M., Iwasaki, Y (2007) Review of Middle East Paleo-zoic plate tectonics,GeoArabia, 12: 35-56.
Sabbagh Bajestani, M., Mahboubi, A., Moussavi-Harami, R., Nadjafi, M (2018) Petrogra phy and geochemistry of sandstones succession of the Qal'eh Dokhtar Formation (Middle–Up per Jurassic), East Central Iran: implications for provenance, tectonic setting and palaeoweathering. Journal of African Earth Sciences, 147: 523–535.
Sharafi, M. Moussavi-Harami, S. R. Mahboubi, A. and Jafarzadeh M (2018) Petrography and Geochemistry of the sandstones of the Geirud Formation in the Central Alborz: Application for Provenance and Tectonic setting. Journal of Applied Sedimentology, 6: 1-24. [In Persian with English abstract].
Sharland, P. R., Archer,  R., Casey, D. M., Davies, R. B., Hall, S. H., Hevard, A. P., Horbury, A. D., Simmons, M. D (2001) Arabian Plate Sequence Stratigraphy, GeoArabian, Special Publication, 2: 1-270.
Stampfli, G., Marcoux, J., Baud, A (1991) Tethyan margins in space and time", Palaeogeography, Palaeoclimatology, Paleecology, 87: 373–409.
Suttner, L. J., Basu, A., Mack, G. M (1981) Climate and the origin of quartz arenites, Journal of Sedimentary Petrology, 51: 1235–1246.
Suttner, L. J., Dutta, P (1986) Alluvial sandstone composition and paleoclimate, I. Framework mineralogy, Journal of Sedimentary Petrology, 56: 329-345.
Taylor, S. R., McLennan, S. M (1985) The Continental Crust: its Composition and Evolution, Blackwell, Oxford 312.
Tortosa, A., Palomares, M., Arribas, J (1991) Quartz grain types in Holocene deposits from Spanish Central System: some problems in provenance analysis. In: Morton AC, Todd SP, Haughton PDW, (Eds.). Developments in Sedimentary Provenance Studies, Special Publication Geological Society, 57: 47-54.
Veizer, J., Prokoph, A (2015) Temperatures and oxygen sotopic composition of Phanerozoic oceans. Earth-Science Reviews, 146: 92–104.
Velbel, M. A., Saad, M. K (1991) Palaeoweathering or diagenesis as the principal modifier of sandstone framework composition? A case study from some Triassic rift-valley redbeds of eastern North America. In: Morton AC, Todd SP, Haughton PDW, (Eds.) Development in sedimentary provenance studies, Geological Society of London. Special Publication, 57: 91-99.
Weltje, G. J (1994) Provenance and dispersal of sand-sized sediments: Reconstruction of dispersal patterns and sources of sand-sized sediments by means of inverse modelling techniques. Faculteit Aardwetenschappen, Universiteit Utrecht, 121, 208 pp.
Yan, Z., Wang, Z., Chen, J., Yan, Q. and Wang, T (2010) Detrital record of Neoproterozoic arc-magmatism along the NW margin of the Yangtze Block, China: U–Pb geochronology and petrography of sandstones. J. ASI. Earth Sci. 37: 322–334.
Young, S. W (1976) Petrographic textures of detrital polycrystalline quartz as an aid to interpreting crystalline source rocks, Journal of Sedimentary Petrology, 46: 595–603.
Zamanian, E., Kanehbad, M., Moussavi-Harami, R., Mahboubi, A (2019) Geochemistry of shales of the Qadir Member (Nayband Formation, Upper Triassic), East Central Iran (Tabas Block): implications for provenance and palaeogeography. Geological Quarterly, 63 (3): 603–618.
Zand-Moghadam, H., Moussavi-Harami, R., Mahboubi, A (2014) Sequence stratigraphy of the Early-Middle Devonian succession (Padeha Formation) in Tabas Block, EastCentral Iran: Implication for mixed tidal flat deposits, Palaeoworld, 23: 31-49.
Zand-Moghadam, H., Moussavi-Harami, R., Mahboubi, A., Bavi, H (2013) Comparison of tidalites in siliciclastic, carbonate, and mixed siliciclastic-carbonate Systems: examples from Cambrian and Devonian deposits of East-Central Iran, ISRN Geology, 1-21.
Zuffa, G. G (1980) Hybrid arenites: their composition and classification, Journal of Sedimentary Petrology, 50: 21-29.