بررسی نحوه ی رخداد کانسار چنگرزه (جنوب نطنز) در توالی رسوبی تریاس میانی: نمونه ای از ذخایر سرب± نقره تیپ دره ی می سی سی پی در کمربند فلززایی ملایر-اصفهان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه زمین شناسی، دانشکده علوم، دانشگاه بوعلی سینا، همدان

2 دانشجوی کارشناسی ارشد، گروه زمین شناسی، دانشکده علوم، دانشگاه بوعلی سینا، همدان

3 شرکت معادن سرمک، تهران، ایران

چکیده

کانسارهای فلزی با سنگ­میزبان رسوبی به­عنوان مهم­ترین منابع تأمین­کننده­ی سرب و روی در ایران هستند که در محدوده­ی سنی پروتروزوئیک بالایی تا سنوزوئیک تشکیل شده­اند. کانسار سرب± نقره چنگرزه به ­میزبانی دولستون­های گسلی تریاس­میانی در فاصله 75 کیلومتری شمال­خاوری اصفهان و بخش جنوبی کمربند فلززایی ملایر- اصفهان، قرار دارد. کانه­زایی­ به دو صورت درون­زاد سولفیدی و برون­زاد غیرسولفیدی (اکسیدی، کربناتی و سیلیکاتی)، وجود دارد. کانه­زایی سولفیدی با ساخت و بافت­های برشی، پرکننده حفرات، رگه- رگچه­ای و جانشینی به­طور عمده از گالن و کانه­­های فرعی اسفالریت، پیریت و سری تتراهدریت- تنانتیت، تشکیل شده است. براساس نتایج شیمی کانی­ها، محتوای  mol% FeS در ترکیب اسفالریت­ها بین 14/1 تا 88/3 درصد مولار، بدست آمد که منطبق با وضعیت سولفیداسیون متوسط (LogfS2≈ −13)، است. نسبت Co/Ni در ترکیب پیریت­­ نیز بین 12/0 تا 25/0، آشکار شد که بر مبنای آن دارای خاستگاه رسوبی تا گرمابی هستند. مقادیر دما و شوری مـیانبارهای سـیال حاکی از تـشکیل کانه­زایی سولفیدی مرتبط با شورابه­های حوضه­ای غنی از FeCl2-MgCl2 (ترکیبی از آب­های اقیانوسی قدیمی و سیالات به دام افتاده در حفرات سنگ)، هستند که طی مراحل پایانی کانه­زایی با آب­های جوی رقیق، مخلوط شده­اند. با در نظر گرفتن شواهدی نظیر جایگاه تکتونیکی، سنگ­میزبان دولستون، دگرسانی­های سیلیسی­ و دولومیتی­، مجموعه کانه­های فلزی سولفیدی ساده، کنترل­کننده­های لیتولوژی- ساختاری، سولفات­های دریایی به عنوان منشاء اصلی سولفور و فلزات آزاد شده از پی­سنگ رسوبی زیرین، می­توان دریافت که کانسار چنگرزه دارای بیش­ترین شباهت با کانسارهای تیپ دره­ی می­سی­سی­پی است.

کلیدواژه‌ها


عنوان مقاله [English]

Genesis of the Changarzeh deposit (southern Natanz) in middle Triassic sedimentary sequence: A typical example of Pb±Ag Mississippi valley type deposit at Malayer-Esfahan metallogenic belt

نویسندگان [English]

  • E. Tale Fazel 1
  • E. Mokhtari Nezhad 2
  • A. Hossein Khani 3
چکیده [English]

Carbonate-hosted base metal deposits are an important source of the world lead and zinc resources in Iran and were formed in late Proterozoic to Cenozoic age.  The Changarzeh Pb±Ag deposit with Middle Triassic faulted-dolostone, is located 75 km northeast Esfahan Province, southern part of the MEMB. Mineralization occurs as two hypogene (sulfide) and supergene (oxide, carbonate and silicate), orebodies. Sulfide mineralization with cavity filling, vein-veinlets and replacement textures is mainly composed of galena, sphalerite, pyrite and tetrahedrite-tennantite series. According to mineral chemistry data, FeS mol% content in sphalerites varies from 1.14 to 3.88 mol%, which corresponds to intermediate sulfidation state (LogfS2≈ -13). The Co/Ni ratio in pyrites varies from 0.12 and 0.25, which belong to sedimentary to hydrothermal fluids. The temperature and salinity values ​​of fluid inclusions in sulfide mineralization of the Changarzeh deposit are closely related to the composition of FeCl2-MgCl2 basinal brines (combination of paleo-oceanic waters and trapped high-brine fluids in cavities of rocks), which mixed by meteoric water in final mineralization stage. Considering all the evidence such as tectonic setting, dolostone host rock, silicification and dolomitic alterations, simple sulfide ore mineral, lithological-structural controls, marine sulfates as the main source of sulfur and metals released from the lower sedimentary bedrock, it can be said that the Changarzeh deposit is most similar to the Mississippi Valley Type (MVT) deposits.

کلیدواژه‌ها [English]

  • Dolomitization alteration
  • Mineralization
  • Pb-Ag
  • Changarzeh
حیاتی، س.، معانی­جو، م.، طالع­فاضل، ا.، محسنی، ح (1394) بررسی ارتباط دولومیت‌زایی و کانه‌زایی در کانسار اپی‌ژنتیک آهنگران (جنوب­شرق ملایر): شواهد کانی‌شناسی، بافت و ساخت و شیمی کانی‌ها. مجله رسوب­شناسی کاربردی، دوره 4، شماره 7، ص 17-1.
زاهدی، م.، رحمتی، م (1382) برگه زمین‌شناسی1:100،000 طرق، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
زاهدی، م (1371) چهارگوش زمین‌شناسی1:250،000 کاشان، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
طالع­فاضل، ا (1397) پـتروگرافی و ترکیب شیمیایی دولومیت­ها در کانسار سرب و روی خان­سرمه و ارتباط آن با رخداد کانه­زایی سولفیدی در منطقه واقع در غرب اصفهان. مجله رسوب­شناسی کاربردی، دوره 6، شماره 11، ص 81-65.
مجموعه معادن سرمک (1388) گزارش پایان عملیات اکتشافی در معدن چنگرزه، سازمان صنایع و معادن استان اصفهان، 59 ص.
نبوی، م. ح (1355) دیباچه­ای بر زمین­شناسی ایران. سازمان زمین­شناسی و اکتشافات معدنی کشور، 109ص.
Bakker R. J (2003) Package FLUIDS 1: Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194: 3–23.
Barnes, H. L (1997) Geochemistry of hydrothermal ore deposits. Third ed., New York, Wiley, 797p.
Bralia, A., Sabatoini, G., and Troja, F (1979) A revaluation of the Co/Ni ratio in Pyrite as geochemical tool in ore genesis problems. Mineralium Deposita, 14: 352-374.
Brown, P. E (1989) Flincor: a microcomputer program for the reduction and investigation of fluid inclusion data. American Mineralogist, 74: 1390-1393.
Beane, R. E (1983) The magmatic-meteoric transition. Geothermal Resources Council, Special Report, 13: 245-253.
Bodnar, R. J (1995) Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. In: J.F.H. Thompson (Editor), Magmas, fluids, and ore deposits. Mineralogical Association of Canada Short Course Series, Ontario, pp. 139–152.
Bodnar, R. J., Lecuemberri-Sanchez, P., Moncada, D., Steelemacinnis, M (2014) Fluid Inclusions in Hydrothermal Ore Deposits. Treatise on Geochemistry, 2nd Edition, 13: 119-142.
Boiron, M. C., Cathelineau, M., Richard, A (2010) Fluid flows and metal deposition near basement/cover unconformity: lessons and analogies from Pb–Zn–F–Ba systems for the understanding of Proterozoic U deposits. Geofluids, 10: 270–292.
Cathelineau, M., and Boiron M. C (2010) Downward penetration and mixing of sedimentary brines and dilute hot waters at 5 km depth in the granite basement at Soultz-sous-Foreˆts (Rhine graben, France). Comptes Rendus Geosciences.
Cooke, D.R., Bull, S.W., Large, R. R., McGoldrick, P. J (2000) The importance of oxidized brines for the formation of Australian Proterozoic stratiform sediment-hosted Pb-Zn (SEDEX) deposits. Economic Geology, 95: 1-18
Cook, N. J., Ciobanu, C. L., Pring, A., Skinner, W., Shimizue, M., Danyushevsky, L., Saini-Eidukat, B., Melcher, F (2009) Trace and minor elements in sphalerite: A LA-ICP-MS study. Geochimica et Cosmochimica Acta 73: 4761-4791.
Crerar, D. A., and Anderson, G. M (1971) Solubility and solvation reactions of quartz in dilute hydrothermal solutions. Chemical Geology, 8: 107-22.
Dixon, C. J., and Pereira, J (1974) Plate tectonics and mineralization in the Tethyan Region. Mineralium Deposita, 9: 185-198.
Driesner, T., and Heinrich, C. A (2007) The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71: 4880-4901.
Einaudi, M. T., Hedenquist, J. H. and Inan, E. E (2003) Sulfidation state of fluids in active and extinct hydrothermal systems: transtions from porphyry to epithermal enviroments. Society of Economic Geologists Special Publication 10: 285-313.
Fontes, J. C., and Matray, J. M (1993) Geochemistry and origin of formation brines from the Paris Basin, France: 1. Brines associated with Triassic salts. Chemical Geology, 109: 149-175.
George, L. L., Biagioni, C., D’Orazio, M., Cook, N. J (2018) Textural and trace element evolution of pyrite during greenschist facies metamorphic recrystallization in the southern Apuan Alps (Tuscany, Italy): influence on the formation of Tl-rich sulfosalt melt. Ore Geology Reviews, 102: 59–105.
George, L. L., Cook, N. J., and Ciobanu, C. L (2017) Minor and Trace Elements in Natural Tetrahedrite-Tennantite: Effects on Element Partitioning among Base Metal Sulphides. Minerals, 17: 2-25.
Ghorbani, M (2013) Economic Geology Ore Deposits of Iran. Springer-Verlag, 640p.
Gleeson, S. A., Wilkinson, J. J., Stuart, F. M., Banks, D. A (2001) The origin and evolution of base metal mineralising brines and hydrothermal fluids, South Cornwall, UK. Geochimica et Cosmochimica Acta, 65: 2067–2079.
Grant, H. L. J., Hannington, M. D., Petersen, S., Frische, M., Fuchs, S. H (2018) Constraints on the behavior of trace elements in the actively forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite. Chemical Geology, 498: 45–71.
Hanor, J. S (1994) Origin of saline fluids in sedimentary basins. In Geofluids: Origin, migration and evolution of fluids in sedimentary basins. Special Publication Geological Society of London, 78:151–174.
He, Y., Wu, T., Huang, Z., Ye, L., Deng, P., Xiang, Z (2020) Genesis of the Maoping carbonate-hosted Pb–Zn deposit, northeastern Yunnan Province, China: evidences from geology and C–O–S–Pb isotopes. Acta Geochimica, https://doi.org/10.1007/s11631-020-00424-4
Heijlen, W., Muchez, P. and Banks, D. A (2001) Origin and evolution of high-salinity, Zn-Pb mineralising fluids in the Variscides of Belgium. Mineralium Deposita, 36: 165-176.
Koziy, L., Bull, S., Large, R., Selley, D (2009) Salt as a fluid driver, and basement as a metal source, for stratiform sediment-hosted copper deposits. Geology, 37: 1107–10.
Leach, D., Sangster, D., Kelley, K., Large, R. R., Garven, G., Allen, C., Walters, S. G (2005) Sediment-hosted lead-zinc deposits: A global perspective. Economic Geology, 100: 561–607.
Lusk, J., and Calder, B. O. E (2004) The composition of sphalerite and associated sulfides in reactions of the Cu-Fe-Zn-S, Fe-Zn-S and Cu-Fe-S systems at 1 bar and temperatures between 250 and 535 ºC. Chemical Geology, 203: 319–345.
Maanijou, M., Tale Fazel, E., Hayati, S., Mohseni, H., Vafaei, M (2020) Geology, fluid inclusions, C–O–S–Pb isotopes and genesis of the Ahangaran Pb-Ag (Zn) deposit, Malayer-Esfahan Metallogenic Province, western Iran. Journal of Asian Earth Sciences, 195: 104339.
Markl, G., Ferry, J. and Bucher, E. K (1998) Formation of saline brines and salt in the lower crust by hydration reactions in partially retrogressed granulites from the Lofoten Islands, Norway. American Journal of Science, 298: 705–757.
Meshkani, S. A., Mehrabi, B., Yaghubpur, A., Alghalandis, Y. F (2011) The application of geochemical pattern recognition to regional prospecting: A case study of the Sanandaj-Sirjan metallogenic zone, Iran. Journal of Geochemical Exploraion, 108: 183–195.
Moëlo, Y., Makovicky, E., Mozgova, N. N., Jambor, J. L. Cook, N. J., Pring, A., Paar, W., Nickel, E. H., Graeser, G., Karup-Møller, S., et al. (2008)Sulfosalt systematics: A review. Report of the sulfosalt sub-committee of the IMA commission on ore mineralogy. European Journal of Mineralogy, 20: 7–46.
Momenzadeh, M (1976) Strata-bound lead zinc ores in the lower Cretaceous and Jurassic sediments in the Malayer-Esfahan District (West Central Iran): Lithology, metal content, zonation and Genesis. Unpublished PhD thesis. University of, Heidelberg, Germany, pp. 300.
Piqué, A., Canals, A., Grandia, F. and Banks, D. A (2008) Mesozoic fluorite in NE Spain record regional base metal-rich brine circulation through basin and basements during extensional events. Chemical Geology, 257: 139-152.
Rajabi, A., Rastad, E., Canet, C (2012) Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration. International Geology Reviews, 54: 1649–1672.
Roedder, E (1984) Fluid inclusions. In: Ribbe, R. H. (Ed.), Review in Mineralogy, 12. Mineralogical Society of America 646p.
Sangster, D. F (2002) The role of dense brines in the formation of vent distal sedimentary exhalative (SEDEX) lead-zinc deposits: field and laboratory evidence. Mineralium Deposita, 37: 149-157.
Schmitt, A. D., and Galer, S. J. G., and Abouchami, W (2009) High-precision cadmium stable isotope measurements by double spike thermal ionization mass spectrometry. Journal of Analytical Atomic Spectrometry, 24: 1079–1088.
Scott, S. D (1983) Chemical behavior of sphalerite and arsenopyrite in hydrothermal and metamorphic environments. Mineralogical Magazine, 47: 427–435.
Shepherd, T. J., Rankin, A. H., and Alderton, D. H. M (1985) A practical guide to fluid inclusion studies. Blackie, Glasgow, 239p.
Stöcklin, J (1968) Structural history and tectonics of Iran: a review. American Association of Petroleum Geologists Bulltein, 52: 1229–1258.
Steele-MacInnis, M., Lecumberri-Sanchez, P., Bodnar, R. J (2012) HOKIEFLINCS−H2O-NaCl: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl. Computers and Geosciences, 49: 334–337.
Stoffell, B., Appold, M. S., Wilkinson, J. J., McClean, N. A., Jeffries, T (2008) Geochemistry and evolution of Mississippi Valley-Type mineralizing brines from the Tri-State and Northern Arkansas districts determined by LA-ICP-MS microanalysis of fluid inclusions. Economic Geology, 103: 1411–35.
Svensen, H., Jamtveit, B., Yardley, B., Engvik, A.K., Austrheim, H. and Broman, C (1999) Lead and bromine enrichment in eclogite-facies fluids: extreme fractionation during lower-crustal hydration. Geology, 27: 467-470.
Van Den Kerkhof, A. M., Hein, U. F (2001) Fluid inclusion petrography. In: Andersen T, Frezzotti ML, Burke EAJ ed. Fluid inclusions: phase relationships – methods applications (special issue), Lithos, 55: 320p.
Wen, H., Zhu, C., Zhang, Y., Cloquet, C., Fan, H., Fu, S (2016) Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits. Scientific Report, 6: 1-8.
Whitney, D. L. and Evans, B. W (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95: 185–187.
Wilkinson, J. J (2001) Fluid inclusions in hydrothermal ore deposits. Lithos, 55: 229-272.
Wilkinson, J. J (2010) A review of fluid inclusion constraints on mineralization in the Irish Orefield and implications for the genesis of sediment-hosted Zn-Pb deposits. Econoic Geology, 105: 417-442.
Yang, Q., Liu, W., Zhang, J., Wang, J., Zhang, X (2019) Formation of Pb–Zn deposits in the Sichuan–Yunnan–Guizhou triangle linked to the Youjiang foreland basin: evidence from Rb–Sr age and in situ sulfur isotope analysis of the Maoping Pb–Zn deposit in northeastern Yunnan Province, southeast China. Ore Geology Reviews, 107: 780–800.
Ye, L., Cook, N. J., Ciobanu, C. L., Liu, Y. P., Zhang, Q., Gao, W., Yang, Y. L., and Danyushevsky, L. V (2011) Trace and minor elements in sphalerite from base metal deposits in South China: a LA-ICP-MS study. Ore Geology Reviews, 39: 188–217.
Yardley, B. W. D (2005) Metal concentrations in crustal fluids and their relationship to ore formation. Economic Geology, 100: 613–32.
Zhang, Y. G., and Frantz, J. D (1987) Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. Chemical Geology, 64: 335–350.
Zhang, H. J., Fan, H. F., Xiao, C. Y., Wen, H. J., Ye, L., Huang, Z. L., Zhou, J. X., Guo, Q. J (2019) The mixing of multi-source fluids in the Wusihe Zn–Pb ore deposit in Sichuan Province, Southwestern China. Acta Geochimca, 38: 642–653.