حیاتی، س.، معانیجو، م.، طالعفاضل، ا.، محسنی، ح (1394) بررسی ارتباط دولومیتزایی و کانهزایی در کانسار اپیژنتیک آهنگران (جنوبشرق ملایر): شواهد کانیشناسی، بافت و ساخت و شیمی کانیها. مجله رسوبشناسی کاربردی، دوره 4، شماره 7، ص 17-1.
زاهدی، م.، رحمتی، م (1382) برگه زمینشناسی1:100،000 طرق، سازمان زمینشناسی و اکتشافات معدنی کشور.
زاهدی، م (1371) چهارگوش زمینشناسی1:250،000 کاشان، سازمان زمینشناسی و اکتشافات معدنی کشور.
طالعفاضل، ا (1397) پـتروگرافی و ترکیب شیمیایی دولومیتها در کانسار سرب و روی خانسرمه و ارتباط آن با رخداد کانهزایی سولفیدی در منطقه واقع در غرب اصفهان. مجله رسوبشناسی کاربردی، دوره 6، شماره 11، ص 81-65.
مجموعه معادن سرمک (1388) گزارش پایان عملیات اکتشافی در معدن چنگرزه، سازمان صنایع و معادن استان اصفهان، 59 ص.
نبوی، م. ح (1355) دیباچهای بر زمینشناسی ایران. سازمان زمینشناسی و اکتشافات معدنی کشور، 109ص.
Bakker R. J (2003) Package FLUIDS 1: Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194: 3–23.
Barnes, H. L (1997) Geochemistry of hydrothermal ore deposits. Third ed., New York, Wiley, 797p.
Bralia, A., Sabatoini, G., and Troja, F (1979) A revaluation of the Co/Ni ratio in Pyrite as geochemical tool in ore genesis problems. Mineralium Deposita, 14: 352-374.
Brown, P. E (1989) Flincor: a microcomputer program for the reduction and investigation of fluid inclusion data. American Mineralogist, 74: 1390-1393.
Beane, R. E (1983) The magmatic-meteoric transition. Geothermal Resources Council, Special Report, 13: 245-253.
Bodnar, R. J (1995) Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. In: J.F.H. Thompson (Editor), Magmas, fluids, and ore deposits. Mineralogical Association of Canada Short Course Series, Ontario, pp. 139–152.
Bodnar, R. J., Lecuemberri-Sanchez, P., Moncada, D., Steelemacinnis, M (2014) Fluid Inclusions in Hydrothermal Ore Deposits. Treatise on Geochemistry, 2nd Edition, 13: 119-142.
Boiron, M. C., Cathelineau, M., Richard, A (2010) Fluid flows and metal deposition near basement/cover unconformity: lessons and analogies from Pb–Zn–F–Ba systems for the understanding of Proterozoic U deposits. Geofluids, 10: 270–292.
Cathelineau, M., and Boiron M. C (2010) Downward penetration and mixing of sedimentary brines and dilute hot waters at 5 km depth in the granite basement at Soultz-sous-Foreˆts (Rhine graben, France). Comptes Rendus Geosciences.
Cooke, D.R., Bull, S.W., Large, R. R., McGoldrick, P. J (2000) The importance of oxidized brines for the formation of Australian Proterozoic stratiform sediment-hosted Pb-Zn (SEDEX) deposits. Economic Geology, 95: 1-18
Cook, N. J., Ciobanu, C. L., Pring, A., Skinner, W., Shimizue, M., Danyushevsky, L., Saini-Eidukat, B., Melcher, F (2009) Trace and minor elements in sphalerite: A LA-ICP-MS study. Geochimica et Cosmochimica Acta 73: 4761-4791.
Crerar, D. A., and Anderson, G. M (1971) Solubility and solvation reactions of quartz in dilute hydrothermal solutions. Chemical Geology, 8: 107-22.
Dixon, C. J., and Pereira, J (1974) Plate tectonics and mineralization in the Tethyan Region. Mineralium Deposita, 9: 185-198.
Driesner, T., and Heinrich, C. A (2007) The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71: 4880-4901.
Einaudi, M. T., Hedenquist, J. H. and Inan, E. E (2003) Sulfidation state of fluids in active and extinct hydrothermal systems: transtions from porphyry to epithermal enviroments. Society of Economic Geologists Special Publication 10: 285-313.
Fontes, J. C., and Matray, J. M (1993) Geochemistry and origin of formation brines from the Paris Basin, France: 1. Brines associated with Triassic salts. Chemical Geology, 109: 149-175.
George, L. L., Biagioni, C., D’Orazio, M., Cook, N. J (2018) Textural and trace element evolution of pyrite during greenschist facies metamorphic recrystallization in the southern Apuan Alps (Tuscany, Italy): influence on the formation of Tl-rich sulfosalt melt. Ore Geology Reviews, 102: 59–105.
George, L. L., Cook, N. J., and Ciobanu, C. L (2017) Minor and Trace Elements in Natural Tetrahedrite-Tennantite: Effects on Element Partitioning among Base Metal Sulphides. Minerals, 17: 2-25.
Ghorbani, M (2013) Economic Geology Ore Deposits of Iran. Springer-Verlag, 640p.
Gleeson, S. A., Wilkinson, J. J., Stuart, F. M., Banks, D. A (2001) The origin and evolution of base metal mineralising brines and hydrothermal fluids, South Cornwall, UK. Geochimica et Cosmochimica Acta, 65: 2067–2079.
Grant, H. L. J., Hannington, M. D., Petersen, S., Frische, M., Fuchs, S. H (2018) Constraints on the behavior of trace elements in the actively forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite. Chemical Geology, 498: 45–71.
Hanor, J. S (1994) Origin of saline fluids in sedimentary basins. In Geofluids: Origin, migration and evolution of fluids in sedimentary basins. Special Publication Geological Society of London, 78:151–174.
He, Y., Wu, T., Huang, Z., Ye, L., Deng, P., Xiang, Z (2020) Genesis of the Maoping carbonate-hosted Pb–Zn deposit, northeastern Yunnan Province, China: evidences from geology and C–O–S–Pb isotopes. Acta Geochimica, https://doi.org/10.1007/s11631-020-00424-4
Heijlen, W., Muchez, P. and Banks, D. A (2001) Origin and evolution of high-salinity, Zn-Pb mineralising fluids in the Variscides of Belgium. Mineralium Deposita, 36: 165-176.
Koziy, L., Bull, S., Large, R., Selley, D (2009) Salt as a fluid driver, and basement as a metal source, for stratiform sediment-hosted copper deposits. Geology, 37: 1107–10.
Leach, D., Sangster, D., Kelley, K., Large, R. R., Garven, G., Allen, C., Walters, S. G (2005) Sediment-hosted lead-zinc deposits: A global perspective. Economic Geology, 100: 561–607.
Lusk, J., and Calder, B. O. E (2004) The composition of sphalerite and associated sulfides in reactions of the Cu-Fe-Zn-S, Fe-Zn-S and Cu-Fe-S systems at 1 bar and temperatures between 250 and 535 ºC. Chemical Geology, 203: 319–345.
Maanijou, M., Tale Fazel, E., Hayati, S., Mohseni, H., Vafaei, M (2020) Geology, fluid inclusions, C–O–S–Pb isotopes and genesis of the Ahangaran Pb-Ag (Zn) deposit, Malayer-Esfahan Metallogenic Province, western Iran. Journal of Asian Earth Sciences, 195: 104339.
Markl, G., Ferry, J. and Bucher, E. K (1998) Formation of saline brines and salt in the lower crust by hydration reactions in partially retrogressed granulites from the Lofoten Islands, Norway. American Journal of Science, 298: 705–757.
Meshkani, S. A., Mehrabi, B., Yaghubpur, A., Alghalandis, Y. F (2011) The application of geochemical pattern recognition to regional prospecting: A case study of the Sanandaj-Sirjan metallogenic zone, Iran. Journal of Geochemical Exploraion, 108: 183–195.
Moëlo, Y., Makovicky, E., Mozgova, N. N., Jambor, J. L. Cook, N. J., Pring, A., Paar, W., Nickel, E. H., Graeser, G., Karup-Møller, S., et al. (2008)Sulfosalt systematics: A review. Report of the sulfosalt sub-committee of the IMA commission on ore mineralogy. European Journal of Mineralogy, 20: 7–46.
Momenzadeh, M (1976) Strata-bound lead zinc ores in the lower Cretaceous and Jurassic sediments in the Malayer-Esfahan District (West Central Iran): Lithology, metal content, zonation and Genesis. Unpublished PhD thesis. University of, Heidelberg, Germany, pp. 300.
Piqué, A., Canals, A., Grandia, F. and Banks, D. A (2008) Mesozoic fluorite in NE Spain record regional base metal-rich brine circulation through basin and basements during extensional events. Chemical Geology, 257: 139-152.
Rajabi, A., Rastad, E., Canet, C (2012) Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration. International Geology Reviews, 54: 1649–1672.
Roedder, E (1984) Fluid inclusions. In: Ribbe, R. H. (Ed.), Review in Mineralogy, 12. Mineralogical Society of America 646p.
Sangster, D. F (2002) The role of dense brines in the formation of vent distal sedimentary exhalative (SEDEX) lead-zinc deposits: field and laboratory evidence. Mineralium Deposita, 37: 149-157.
Schmitt, A. D., and Galer, S. J. G., and Abouchami, W (2009) High-precision cadmium stable isotope measurements by double spike thermal ionization mass spectrometry. Journal of Analytical Atomic Spectrometry, 24: 1079–1088.
Scott, S. D (1983) Chemical behavior of sphalerite and arsenopyrite in hydrothermal and metamorphic environments. Mineralogical Magazine, 47: 427–435.
Shepherd, T. J., Rankin, A. H., and Alderton, D. H. M (1985) A practical guide to fluid inclusion studies. Blackie, Glasgow, 239p.
Stöcklin, J (1968) Structural history and tectonics of Iran: a review. American Association of Petroleum Geologists Bulltein, 52: 1229–1258.
Steele-MacInnis, M., Lecumberri-Sanchez, P., Bodnar, R. J (2012) HOKIEFLINCS−H2O-NaCl: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl. Computers and Geosciences, 49: 334–337.
Stoffell, B., Appold, M. S., Wilkinson, J. J., McClean, N. A., Jeffries, T (2008) Geochemistry and evolution of Mississippi Valley-Type mineralizing brines from the Tri-State and Northern Arkansas districts determined by LA-ICP-MS microanalysis of fluid inclusions. Economic Geology, 103: 1411–35.
Svensen, H., Jamtveit, B., Yardley, B., Engvik, A.K., Austrheim, H. and Broman, C (1999) Lead and bromine enrichment in eclogite-facies fluids: extreme fractionation during lower-crustal hydration. Geology, 27: 467-470.
Van Den Kerkhof, A. M., Hein, U. F (2001) Fluid inclusion petrography. In: Andersen T, Frezzotti ML, Burke EAJ ed. Fluid inclusions: phase relationships – methods applications (special issue), Lithos, 55: 320p.
Wen, H., Zhu, C., Zhang, Y., Cloquet, C., Fan, H., Fu, S (2016) Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits. Scientific Report, 6: 1-8.
Whitney, D. L. and Evans, B. W (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95: 185–187.
Wilkinson, J. J (2001) Fluid inclusions in hydrothermal ore deposits. Lithos, 55: 229-272.
Wilkinson, J. J (2010) A review of fluid inclusion constraints on mineralization in the Irish Orefield and implications for the genesis of sediment-hosted Zn-Pb deposits. Econoic Geology, 105: 417-442.
Yang, Q., Liu, W., Zhang, J., Wang, J., Zhang, X (2019) Formation of Pb–Zn deposits in the Sichuan–Yunnan–Guizhou triangle linked to the Youjiang foreland basin: evidence from Rb–Sr age and in situ sulfur isotope analysis of the Maoping Pb–Zn deposit in northeastern Yunnan Province, southeast China. Ore Geology Reviews, 107: 780–800.
Ye, L., Cook, N. J., Ciobanu, C. L., Liu, Y. P., Zhang, Q., Gao, W., Yang, Y. L., and Danyushevsky, L. V (2011) Trace and minor elements in sphalerite from base metal deposits in South China: a LA-ICP-MS study. Ore Geology Reviews, 39: 188–217.
Yardley, B. W. D (2005) Metal concentrations in crustal fluids and their relationship to ore formation. Economic Geology, 100: 613–32.
Zhang, Y. G., and Frantz, J. D (1987) Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. Chemical Geology, 64: 335–350.
Zhang, H. J., Fan, H. F., Xiao, C. Y., Wen, H. J., Ye, L., Huang, Z. L., Zhou, J. X., Guo, Q. J (2019) The mixing of multi-source fluids in the Wusihe Zn–Pb ore deposit in Sichuan Province, Southwestern China. Acta Geochimca, 38: 642–653.