سنگ شناسی و زیست چینه نگاری سازند های آقچاگیل و آپشرون بر اساس نانوپلانکتون‌های آهکی در دشت گرگان: کاربرد در بازسازی جغرافیای دیرینه حوضه خزر جنوبی

نویسندگان

1 استادیار گروه زمین‌شناسی، دانشکده علوم‌پایه، دانشگاه هرمزگان، بندرعباس

2 دکترا زمین‌شناسی، پژوهشگاه صنعت نفت، تهران

3 استادیار گروه زمین‌شناسی، پژوهشگاه صنعت نفت، تهران

4 استادیار دانشکده علوم‌زمین، دانشگاه تحصیلات تکمیلی علوم‌پایه زنجان، زنجان

5 کارشناس‌ارشد رسوب‌شناسی و سنگ‌شناسی رسوبی، شرکت نفت خزر، تهران

چکیده

سازند­­های کربناته و سیلیسی-آواری آقچاگیل و آپشرون در یک برش زیرسطحی در ناحیه دشت گرگان مورد مطالعه قرار گرفته است. سازند آقچاگیل در این ناحیه متشکل از واحد­های ماسه سنگ زیرین و کربناته بالایی است. پتروفاسیس ماسه­سنگ شامل لیت­آرنایت، ساب­لیت آرنایت و لیت­آرنایت فلدسپات­دار است. رخساره­های دانه­پشتیبان در این سازند غالب بوده و به ویژه رسوبات کربناته دارای مقادیر قابل­توجه تخلخل به فرم­های قالبی، حفره­ای و فنسترال بوده که بیانگر تفاوت آشکار رسوبات این سازند در ایران با کشور­های همجوار از جمله آذربایجان و ترکمنستان است. این ویژگی­ها، رسوبات سازند آقچاگیل را به عنوان توالی مستعد مخزن مطرح می­نماید و ضرورت انجام مطالعات جامع زمین­شناسی و اکتشافی در این ناحیه را تاکید می­کند. نهشته­های سازند آپشرون شامل واحد ماسه­سنگ زیرین و مادستون بالایی و متشکل از ماسه­سنگ لیت­آرنایت و ساب­لیت­آرنایت، سنگ­آهک اایید­دار بایوکلاستیک و مادستون/ رس­سنگ خاکستری تا قهوه­ای رنگ است. بر اساس جوان‌ترین نانوفسیل‌های یافت شده در سازند­های آقچاگیل و آپشرون، سن نسبی این سازند­ها به ترتیب پلیوسن بالایی- پلئیستوسن پایینی و پلئیستوسن میانی تعیین شده است. الگوی گسترش نانوفسیل­های آهکی نشان­دهنده وجود ارتباط بین حوضه خزر جنوبی با دریای سیاه و حوضه مدیترانه در پلئیستوسن پایینی و میانی و عدم ارتباط در انتهای پلیوسن- ابتدای پلئیستوسن است که برای اولین بار در این مطالعه مطرح می­شود.  

کلیدواژه‌ها


عنوان مقاله [English]

Lithostratigraphy and biostratigraphy of the Aghchagil and Apsheron formations based on calcareous Nannoplankton in Gorgan plain: application for paleogeographical reconstruction of south Caspian basin

نویسندگان [English]

  • M. Sharafi 1
  • N. Mousavi 2
  • M. Moradpour 3
  • B. Beiranvand 3
  • A. Bayet-Goll 4
  • H. Mohajer Soltani 5
1
2 .
3
4
5
چکیده [English]

Carbonate and siliciclastic Aghchagil and Apsheron formations has been studied in a subsurface section in the Gorgan Plain. The Aghchagil Fm. consists of lower sandstone and upper carbonate units in the studied area. Sandstones petrofacies include litharenite, sublitharenite and feldspatic litharenite. The grain-supported facies is dominated in this Fm. and displays abundant porosity as moldic, vuggy and fenestral forms specially in the carbonate sediments, which indicates considerable lithological differences in Iran and the neighboring countries like Azerbaijan and Turkmenistan. These features candidate the Aghchagil sediments as prone reservoir succession, hence emphasizes a comprehensive geological and exploration study in the studied area. The Apsheron sediments can be sub-divided into lower sandstone and upper mudstone units and consist of sandstone with litharenite and sublitharenite petrofacies and ooidal/bioclastic limestone and gray/brown mudstone/claystone. Based on the youngest nannofossil species the late Pliocene-lower Pleistocene and middle Pleistocene ages are defined for the in the Aghchagil and Apsheron Fm., respectively. Nannofossils distribution of the studied succession displays the SCB was connected to the Black Sea and Mediterranean Basin in the lower Pleistocene and middle Pleistocene and was isolated in the late Pliocene-earliest Pleistocene. 

کلیدواژه‌ها [English]

  • Aghchagil
  • Apsheron
  • Gorgan plain
  • Nannofossil
پرنیان، ب.، وحید، ا.، حمزه، س.، محمد، ب (1400) زیست چینه­نگاری، رخساره و چینه­نگاری سکانسی سازند سروک در برش­های رشتالو و خارتو، فارس نیمه­ساحلی، زاگرس، ایران. نشریه رسوب­شناسی کاربردی، دوره 9، جلد 17، ص 145-171، 10.22084/PSJ.2021.22084.1247.
یوسفی، ر (1393) مطالعه مشخصات سنگ­شناسی و شرایط محیطی سازندهای چلکن، آقچاگیل و آپشرون در میدان نفتی سردار جنگل، خزر جنوبی، پایان­نامه کارشناسی­ارشد. دانشگاه تهران، 127 ص.
Abdullayev, N. A., Kadirov, F., Guliyev, S (2015) Subsidence history and basin-fill evolution in the South Caspian Basin from geophysical mapping, flexural backstripping, forward lithospheric modelling and gravity modelling. In Brunet, M.-F., McCann, T., Sobel, E. R. (eds) Geological Evolution of Central Asian Basins and the Western Tien Shan Range. Geological Society, London, Special Publications, 427. https://doi.org/10.1144/SP427.5.
Abdullayev, E., Leroy, S. A. G (2016) Provenance of clay minerals in the sediments from the Pliocene Productive Series, western South Caspian Basin. Marine and Petroleum Geology, 73: 517-527.
Abdullayev, Nazim R., Gregory W. Riley, and Andrew P. Bowman (2010) Regional controls on lacustrine sandstone reservoirs: The Pliocene of the South Caspian Basin, in O. W. Baganz, Y. Bartov, K. Bohacs, and D. Nummendal, eds., Lacustrine sandstone reservoirs and hydrocarbon systems. AAPG Memoir, 95: 1-28.
Abrams, M. A., Narimanov, A. A (1997) Geoochemical evaluation of hydrocarbons and their potential sources in the western South Caspian depression, Azerbaijan Republic. Marine and Petroleum Geology, 14: 451–468.
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie´, P., Meyer, B., Wortel, R (2011) Zagros orogeny: a subduction- dominated process. Geology Magazine, 148(5-6): 692–725.
Agnini, C., Monechi, S., Raffi, I (2017) Calcareous nannofossil biostratigraphy: historical background and application in Cenozoic chronostratigraphy. Lethaia, 50(3): 447-463.
Allen, M. B., Vincent, S. J., Alsop, G. I., Ismail-Zadeh, A., and Flecker, R (2003) Late Cenozoic deformation in the South Caspian region: Effects of a rigid basement block within a collision zone. Tectonophysics, 366: 223–239.
Badertscher, S., Fleitmann, D., Cheng, H.; Edwards, R.L., GöKtüRk, O.M., ZumbüHl, A., Leuenberger, M., TüYsüZ, O (2011) Pleistocene water intrusions from the mediterranean and caspian seas into the black sea. Nature Geoscience 4: 236–239.
Ballato, P., Cifelli, F., Heidarzadeh, Gh., Ghassemi, M. R., Wickert, A. D., Hassanzadeh, J., Dupont-Nivet, G., Ph., Balling, Sudo, M., Zeilinger, G., Schmitt, A.k., Mattei, m., and Strecker, m.r (2011) Tectono-sedimentary evolution of the northern Iranian Plateau: insights frommiddle–late Miocene foreland-basin deposits. Basin Research, 29(4): 1–30.
Baumann, K. -H. & Freitag, T (2004) Pleistocene fluctuations in the northern Benguela Current system as revealed by coccolith assemblages. In, Villa, G., Lees, J. A. & Bown, P. R. (eds) Calcareous Nannofossil Palaeoecology and Palaeocenographic Reconstructions, Proceedings of the INA9 conference, Parma 2002. Marine Micropaleontology. 52(1-4): 195-215.
Bergen, J. A., de Kaenel, E., Blair, S. A., Boesiger, T. M. & Browning, E (2017) Oligocene-Pliocene taxonomy and stratigraphy of the genus Sphenolithus in the circum North Atlantic Basin: Gulf of Mexico and ODP Leg 154. Journal of Nannoplankton Research, 37(2-3): 77-112.
Bown, P. R (1998) Calcareous Nannofossil Biostratigraphy. British Micropalaeontological Society Publications Series. Chapman & Hall, London, 315p.
Bown, P. R (2016) Palaeocene calcareous nannofossils from Tanzania (TDP sites 19, 27 and 38). Journal of Nannoplankton Research, 36 (1): 1-32.
Boomer. I., Whatley, R., Aladin, N. V (1996) Aral Sea Ostracoda as environmental indicators. Lethaia, 29 (1): 77-85.
Boomer, I., von Grafenstein, U., Guichard, F., Bieda, S (2005) Modern and Holocene sublittoral ostracod assemblages (Crustacea) from the Caspian Sea: a unique brackish, deep-water environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 225 (1-4): 173-186.
Brunet, M.-F., Korotaev, M. V., Ershov, A. V., and Nikishin, A. M (2003) The South Caspian Basin: A review of its evolution from subsidence modelling: Sedimentary Geology, 156: 119–148.
Chi, G., P. S. Giles, M. A. Williamson, D. Lavoie, R. Bertrand (2003) Diagenetic history and porosity evolution of Upper Carboniferous sandstones from the Spring Valley #1 well, Maritimes Basin, Canada–implications for reservoir development. Journal of Geochemical Exploration, 80: 171-191.
Folk, R. L (1980) Petrology of Sedimentary Rocks. Hamphill, Austin, Texas, 182 p.
Hearty, P. J., Kindler, P., Cheng, H., Edwards, R. L (1999) A+20m middle Pleistocene sea highstand (Bermuda and the Bahamas) due 375-378.
Hinds, D. J. E. Aliyeva, M. B. Allen, C. E. Davies, S. B. Kroonenberg, M. D. Simmons, and S. J. Vincent (2004) Sedimentation in a discharge dominated fluvial-lacustrine system: The Neogene Productive Series of the South Caspian Basin, Azerbaijan: Marine and Petroleum Geology, 21: 613–638.
Krijgsman, W., Palcu, D.V., Andreetto, F., Stoica, M., Mandic, O (2020) Changing seas in the late Miocene Northern Aegean: A Paratethyan approach to Mediterranean basin evolution. Earth-Science Reviews, 210: 103386.
Krijgsman, W., Stoica, M., Vasiliev, I., Popov, V.V (2010) Rise and fall of the paratethys sea during the messinian salinity crisis. Earth Planet. Sci. Lett., 290: 183-191.
Maiorano, P. & Marino, M (2004) Calcareous nannofossil bioevents and environmental control on temporal and spatial patterns at the early–middle Pleistocene. Marine Micropaleontology, 53: 405-422.
Mikes, T. and Báldi-Beke, M. and Kázmér, M. and Dunkl, I. and Eynatten, H. von (2008) Calcareous nannofossil age constraints on Miocene flysch sedimentation in the Outer Dinarides (Slovenia, Croatia, Bosnia-Herzegovina and Montenegro). Geological Society, London, Special Publications, 298 (1): 335-363.
Martini, E (1971) Standard Tertiary and Quaternary calcareous nannoplankton zonation, in Proceedings of the Second Planktonic Conference Roma 1970, (ed. A. Farinacci), Edizioni Tecnoscienza, Rome, 2: 739-785.
Perch-Nielsen, K (1985) Cenozoic calcareous nannofossils. In Bolli, H. M., Saunders, J.B., and Perch-Nielsen, K. (Eds.), Plankton stratigraphy: Cambridge (Camdridge Univ. Press), 427-554.
Popov, S. V., Antipov, M. P., Zastrozhnov, A. S., Kurina, E. E., Pinchuk. T. N (2010) Sea level Fluctuations on the Northern Shelf of the Eastern Paratethys in the Oligocene–Neogene. Stratigraphy and Geological Correlation, 18: 200–224.
Popov, S. V., Ilyina, L.B., Paramonova, N. P., Goncharova, I. A (2004) Lithologicalpaleogeographic maps of Paratethys. Cour. Forsch.Inst. Senckenb., 250: 1–46.
Popov, S. V., I. G. Shcherba, L. B. Ilyina, L. A. Nevesskaya, N. P. Paramonova, S. O. Khondkarian, and I. Magyar (2006) “Late Miocene to Pliocene palaeogeography of the Paratethys and itsrelation to the Mediterranean”. In: Palaeogeography, Palaeoclimatology, Palaeoecology, 238: 91–106.
Raffi, I., Agnini, C., Backman, J., Catanzariti, R., Pälike, H (2016) A Cenozoic calcareous nannofossil biozonation from low and middle latitudes: A synthesis. Journal of Nannoplankton Research, 36 (2): 121–13.
Reed, J. S., Eriksson, K. A., Kowalewski, M (2005) Climatic, depositional and burial controls on diagenesis of Appalachian Carboniferous sandstones: qualitative and quantitative methods. Sedimentary Geology, 176: 225–246.
Rezaeian, M., Carter, A., Hovius, N., and Allen, M.B (2012) Cenozoic exhumation history of the Alborz Mountains, Iran: New constraints from low-temperature chronometry. Tectonics, 31: TC2004.
Roth, P. H (1983) Jurassic and Lower Cretaceous Calcareous Nannofossils in the Western North Atlantic (Site 534): Biostratigraphy, Preservation, and Some Observations on Biogeography and Paleoceanography. In: Sheridan, R.E., Gradstein, F.M., et al. (Eds.), Initial Reports of the deep sea Drilling Project. 76: 587-621.
Schornikov, E. I (2011) Problems of studying Ostracoda of the Caspian basin. Joannea Geol. Paläont., 11: 177-179
Scotese, C. R (2016) “PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program, PALEOMAP Project”. In: See http://www. earthbyte. org/paleomap-paleoatlas-for-gplates. 10.13140/RG.2.2.34367.00166.
Terry, R. D., Chilingar, G. V (1955) Summary of “Concerning some additional aids in studying sedimentary formations,” by M. S. Shvetsov: Journal of Sedimentary Research, 25: 229-234.
van Baak, C. G. C., W. Krijgsman, I. Magyar, O. Sztanó, L. A. Golovina, A. Grothe, T. M. Hoyle, O. Mandic, I. S. Patina, S. V. Popov, E. P. Radionova, M. Stoica, and I. Vasiliev (2017) “Paratethysresponse to the Messinian salinity crisis”. In: Earth-Science Reviews, 172: 193–223.
Vincent, S., Allen, M., Ismail-Zadeh, A., Flecker, R., Foland, K., Simmons, M (2005) Insights from the Talysh of Azerbaijan into the Paleogene Evolution of the South Caspian Region. Geological Society of America Bulletin, 117: 1513-1533.
Vincent, S. J., Davies, C.E., Richards, K., Aliyeva, E (2010) Contrasting pliocene fluvial depositional systems within the rapidly subsiding south caspian basin; a case study of the Palaeo-Volga and palaeo-kura river systems in the Surakhany suite, upper productive series, onshore Azerbaijan. Mar. Pet. Geol., 27: 2079-2106.
Yanina, T. A (2012) “Correlation of the Late Pleistocene paleogeographical events of the Caspian Sea and Russian Plain”. In: Quaternary International, 271: 120–129.
Yasini, I (1986) Ecology, Paleoecology, and stratigraphy of ostracodes from Late Pliocene and Quaternary deposits of the South Caspian Sea region in northern Iran. International Symposium on Shallow Tethys 2, Wagga, 475–497.
Young, J. R (1998) Neogene. In Bown, P. R. (Ed.), Calcareous Nannofossil Biostratigraphy. British Micropalaeontological Society Publications Series. Chapman & Hall, London, 225-265.
Young, J. R., Bown P. R., Lees, J. A (2017) Nannotax3 website. International Nannoplankton Association. Accessed 21 Apr. 2017. URL.