بررسی تغییرات غلظت فلزات سنگین و شاخص های آلودگی رسوبات سطحی رودخانه ماشلک نوشهر (استان مازندران)

نویسندگان

1 دانشجوی دکترا، گروه زمین‌شناسی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

2 استادیار گروه زمین‌شناسی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

چکیده

رودخانه ماشلک یکی از مهم­ترین رودخانه­های منتهی به دریای خزر در باختر استان مازندران می­باشد. به منظور پایش­های زیست­محیطی تعداد 25 نمونه از رسوبات بستر این رودخانه برداشت گردید و مورد آنالیز دانه­بندی و ICP-MS قرار گرفت. مطالعات رسوب­شناسی نشان دهنده بافت گراول ماسه­ای برای نهشته­های رودخانه ماشلک می­باشد. بررسی غلظت فلزات سنگین نشان داد که بیشترین غلظت فلزات سنگین به ترتیب متعلق به V، Cr، Zn، Ni، Cu، Pb، Co و Mo  می­باشد. بر اساس استانداردهای کیفیت رسوب، رسوبات ماشلک نسبت به فلز کروم و نیکل دارای آلودگی می­باشند. شاخص غنی­شدگی دو فلز کروم و نیکل نشان­دهنده آلودگی متوسط و سایر فلزات نشان­دهنده آلودگی کم می­باشد. شاخص زمین­انباشت فقط برای فلز کروم آلودگی کم تا متوسط را نشان می­دهد. بررسی خطر اکولوژیک فلزات سنگین در نهشته­های رودخانه ماشلک حاکی از نبود آلودگی این نهشته­ها دارد و نشان­دهنده خطر کم منطقه مورد مطالعه می­باشد. نتایج تحلیل همبستگی نشان­دهنده همبستگی مثبت و بالای فلز Al با کلیه فلزات سنگین  و رابطه مثبت و معنی­دار متوسط ذرات در اندازه گل با غلظت این فلزات می­باشد. آزمون تحلیل مؤلفه اصلی نیز منجر به شناسایی 2 فاکتور اصلی گردید. فاکتور اصلی شامل فلزات Co، Al، V، Cu، Ni، Zn و Cr است که نشان­دهنده منشا زمین­زاد برای فلزات سنگین می­باشد، فاکتور دوم نیز شامل ذرات در اندازه گل وMo  می­باشد. تلفیق نتایج آماری نشان­دهنده منشأ زمین­زاد فلزات سنگین در نهشته­های رودخانه ماشلک و نقش ذرات در اندازه گل در حمل و انتقال این فلزات می­باشد. در مجموع به علت عدم تمرکز مراکز صنعتی و همچنین صعب­العبور بودن کرانه رودخانه ماشلک در بالادست که امکان فعالیت‌های انسانی در منطقه را محدود می­کند، رسوبات این رودخانه آلودگی ناچیزی را نسبت به فلزات سنگین دارند و عمده آلودگی­های این رسوبات به صورت نقطه­ای و به علت فعالیت­های کشاورزی و یا ایستگاه پساب محل دفن زباله و شهرک صنعتی در محدوده­های پایین دست رودخانه می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The Investigation of heavy metals concentration variation and pollution indices of surface sediments of Mashalak River in Nowshahr (Mazandaran province)

نویسندگان [English]

  • M. Radmehr 1
  • A. Moghimi Kandelous 2
  • M. Salavati 2
  • S. Hakimi Asiabar 2
چکیده [English]

Mashalak River is located in the north of Iran and is one of the most important rivers leading to the Caspian Sea west of the Mazandaran province. To conduct environmental monitoring, 25 samples of sediments were collected from the Mashalak riverbed. The samples were analyzed by ICP-MS. A review of heavy metal concentrations suggested that the highest concentrations of heavy metals pertained to Vanadium, Chromium, Zinc, Nickel, Copper, Lead, Cobalt, and Molybdenum, respectively. According to Sediment Quality Guidelines (SQGS), Mashalak sediments are more likely to be contaminated with Chromium and Nickel. The enrichment index shows that Chromium and Nickel produce moderate pollution while other metals have low pollution. Using the Geo-Accumulation Index, only Chromium shows low to moderate pollution. Examining the ecological risk of heavy metals in the Mashalak River deposits suggests these deposits are not contaminated, indicating that the ecological risk of the area under study is low. The Principal Component Analysis (PCA) test results helped identify two main factors. The main factor includes such metals as Cobalt, Aluminum, Vanadium, Copper, Nickel, Zinc, and Chromium, which have both lithogenic and anthropogenic origins simultaneously, as the secondary factor includes the former.

کلیدواژه‌ها [English]

  • Pollution
  • Heavy Metals
  • Mashalak River
  • Enrichment index
  • Ecological risk
تقی­پور، م.، خادمی، ح.، ایوبی، ش (1389) تغییرات مکانی غلظت سرب و روی در خاک­های سطحی و ارتباط آن با مواد مادری و نوع کاربری در بخشی از استان همدان، نشریه آب و خاک (علوم و صنایع کشاورزی). دوره 1، شماره 24، ص 144- 132.
چوپانی، س.، رضایی، پ.، غریب­رضا، م. ر (1400) ارزیابی میزان آلودگی و توزیع فلزات سنگین در رسوبات رودخانه کارون در بازه پل­پنجم تا فارسیت با استفاده از داده‌های ژئوشیمیایی و تحلیل‌های آماری. نشریه رسوب­شناسی کاربردی. دوره 9، جلد 18، ص 133-151. 
خدابخش، س.، صحرارو، ن (1394) آزمایش­های رسوب شناسی، انتشارات دانشگاه بوعلی­سینا، 119ص.
راست­منش، ف.، زراسوندی، ع.، مسلم، ف (1394) ارزیابی آلودگی فلزات سنگین در رسوبات سطحی رودخانه کارون در محدوده شهر اهواز. مجله زمین­شناسی کاربردی پیشرفته. دوره 9، شماره 17، ص 22- 11.
رشید شمالی، آ.، خداوردیلو، ح (1391) آلودگی خاک­ها و گیاهان پیرامون بزرگراه ارومیه-سلماس به برخی فلزهای سنگین، نشریه دانش آب و خاک. دوره 3، شماره 22، ص 172-157.
ساریخانی، ر.، جمشیدی، ا.، بهرامی، ش.، قاسمی­دهنوی، آ (1400) بررسی میزان آلودگی فلزات سنگین در خاک­های شهرستان فریدون­شهر، استان اصفهان، نشریه رسوب­شناسی کاربردی، دوره 9، شماره 17، ص 131-144
غریب­رضا، م. ر.، معصومی، ح.، جعفری گرزین، ب.، رحیم­زاده، ح.، اصغری­پور دشت بزرگ، ن (1399) ارزیابی کیفیت رسوبات سطحی رودخانه تجن و تعیین سطح آلودگی بوم­شناسی. مجله محیط­زیست و مهندسی آب. دوره 6، شماره 4، ص 500- 485.
قریب، ف.، مدنی گیوی، م.، سعیدی، ع.، حسین خان ناظر، ن (1383) گزارش ورقه 1:100000 نوشهر. سازمان زمین­شناسی و اکتشافات معدنی، ورقه شماره 6363.
مرتضوی­مهریزی، م.، فیاضی بروجنی، م.، خانه­باد، م (1398) مطالعه ژئوشیمی رسوبات رودخانه مولید، جنوب خاور قائن به منظور تعیین نرخ هوازدگی، میزان آلودگی رسوبات و ارزیابی خطر زیست­محیطی عناصر فلزی، نشریه رسوب­شناسی کاربردی، دوره 7، شماره 14، ص 109-121.
Alahabadi, A., Malvandi, H (2018) Contamination and ecological risk assessment of heavy metals and metalloids in surface sediments of the Tajan River, Iran. Marine Pollution Bulletin, 133: 741-749.‏
Alloway, B. J (Ed.) (2012) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer Science & Business Media, 22: 614p.
Benítez, Á., Torres, S., Morocho, R., Carrillo, W., Donoso, D. A., Calva, J (2020) Platyhypnidium aquaticum as Bioindicator of Metal and Metalloid Contamination of River Water in a Neotropical Mountain City. Plants, 9(8): 974.‏
Cao, H., Amiraslani, F., Liu, J., Zhou, N (2015) Identification of dust storm source areas in West Asia using multiple environmental datasets. Science of the Total Environment, 502: 224-235.
CCREM (Canadian Council of Resource and Environment Ministers) (1987) Canadian water quality guidelines. Task Force on Water Quality Guidelines. Ottawa, Canada.
Chandrasekaran, B., Yi, H. G., Blanco, N. J., McGeary, J. E., Maddox, W. T (2015) Enhanced Procedural Learning of Speech Sound Categories in a Genetic Variant of FOXP2. Journal of Neuroscience, 35(20): 7808–7812.
Chen, X., Zhao, Y., Zeng, C., Li, Y., Zhu, L., Wu, J., Wei, Z (2019) Assessment contributions of physicochemical properties and bacterial community to mitigate the bioavailability of heavy metals during composting based on structural equation models. Bioresource technology, 289p.‏
Dan, G., Daniel, F (2015) Geomathematical and Petrophysical Studies in Sedimentology: An International Symposium, herzien. 286 pp.
Fang, X., Peng, B., Wang, X., Song, Z., Zhou, D., Wang, Q., Tan, C (2019) Distribution, contamination and source identification of heavy metals in bed sediments from the lower reaches of the Xiangjiang River in Hunan province, China. Science of The Total Environment, 689: 557-570.‏
Folk, R. L (1980) Petrology of sedimentary rocks. Hemphill publishing company.
Hakanson, L (1980) Ecological risk index for aquatic pollution control, a sedimentological approach. Journal of Water Research, 14: 975–1001.
Karimian, S., Chamani, A., Shams, M (2020) Evaluation of heavy metal pollution in the Zayandeh-Rud River as the only permanent river in the central plateau of Iran. Environmental monitoring and assessment, 192(5): 1-13.‏
Kelepertzis, E (2014) Accumulation of heavy metals in agricultural soils of Mediterranean: insights from Argolida basin, Peloponnese, Greece. Geoderma, 221: 82-90.
Kowalska, J. B., Mazurek, R., Gąsiorek, M., Zaleski, T (2018) Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental geochemistry and health, 40: 2395–2420.
Li, F., Huang, J., Zeng, G., Yuan, X., Li, X., Liang, J., Bai, B (2013) Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. Journal of Geochemical Exploration, 132: 75-83.‏
Long, E. R., MacDonald, D. D., Smith, L., Calder, F. D (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19: 81–97.
Luo, X., Ding, J., Xu, B., Wang, Y. J., Li, H. B., Yu, S (2012) Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Science of the Total Environment, 424: 88-96.
Luoma, S. N., Rainbow, P. S (2008) Metal contamination in aquatic environments: science and lateral management. Xiv, Cambridge: Cambridge University Press, 573 p.
MacDonald, D. D., Car, R. S., Calder, F. D., Long, E. R., Ingersoll, C. R (1996) Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5: 253-278.
MacDonald, D. D., Ingersoll, C. G., Berger, T (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems, Archives of Environmental Contamination and Toxicology, 39(1): 20-31.
Malvandi, H (2017) Preliminary evaluation of heavy metal contamination in the Zarrin- Gol River sediments, Iran. Mar. Pollut. Bull, 117: 547–553.
Müller, G (1969) Index of geoaccumulation in the sediments of the Rhine River. Geojournal, 2: 108-118.
Nasrabadi, T., Nabi Bidhendi, G., Karbassi, A., Mehrdadi, N (2010) Evaluating the efficiency of sediment metal pollution indices in interpreting the pollution of Haraz River sediments, southern Caspian Sea basin. Environ. Monit. Assess, 171: 395–410.
Peris, M., Micó, C., Recatalá, L., Sánchez, R., Sánchez, J (2007) Heavy metal contents in horticultural crops of a representative area of the European Mediterranean region. Science of the Total Environment, 378: 42-48.
Pourang, N., Tanabe, S., Rezvan, S., Dennis, J. H (2005) Trace elements accumulation in edible tissues of five sturgeon species from the Caspian Sea. Journal of Environmental Monitoring and Assessment, 100: 89-108.
Raj, S., Jee, P. K., Panda, C. R (2013) Textural and heavy metal distribution in sediments of Mahanadi estuary, East coast of India. Indian J. Mar. Sci, 42: 370–374.
Saeedi, M., Li, L.Y., Salmanzadeh, M (2012) Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. Journal of hazardous materials, 227: 9-17.
Sutherland, R. A (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol, 39: 611–627
Tokhi, M., Abdelgawad, E., Lotfy. M. M (2008) Impact of Heavy Metals and Petroleum Hydrocarbons Contamination of the East Port Said Port area, Egypt. Applied Sciences Research, 4: 1788-1798.
Tuker, M (1989) Thechnique in sedimentology. Blackwel Scientific Publication, London. 394p.
Yuan, GL., Sun, T.H., Han, P., Li, J (2013) Environmental geochemical mapping and multivariate geostatistical analysis of heavy metals in topsoils of a closed steel smelter: Capital Iron & Steel Factory, Beijing, China. Journal of Geochemical Exploration, 130:15-21.
Zarezadeh, R., Rezaee, P., Lak, R., Masoodi, M., Ghorbani, M (2017b) A study of textural and accumulation heavy metals of sediments in mangrove ecosystem of Persian Gulf, South Iran. Indian Journal of Geo Marine Sciences, 46(01): 85-78.
Zhang, L., Ye, X., Feng, H., Jing, Y., Ouyang, T., Yu, X., Liang, R., Gao, C., Chen, W (2007) Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China. Marine Pollution Bulletin, 54: 974-982.
Zhang, M., Li, X., Yang, R., Wang, J., Ai, Y., Gao, Y., Yu, H (2019) Multipotential toxic metals accumulated in urban soil and street dust from Xining City, NW China: spatial occurrences, sources, and health risks. Archives of environmental contamination and toxicology, 76(2): 308-330.