ریزرخساره ها، محیط رسوبی و توالی های دیاژنزی سنگ های کربناته سازند آسماری (تاقدیس چناره، جنوب لرستان)

نویسندگان

1 استادیار گروه زمین‌شناسی، دانشگاه لرستان، خرم‌آباد، ایران

2 دانشیار گروه زمین‌شناسی، دانشگاه لرستان، خرم‌آباد، ایران

3 دانشجوی دکترا رسوب‌شناسی و سنگ‌شناسی رسوبی، دانشگاه بوعلی‌سینا، همدان، ایران، کارشناس آزمایشگاه مرکزی دانشگاه لرستان، خرم‌آباد، ایران

4 دانش‌آموخته کارشناسی‌ارشد چینه‌شناسی، دانشگاه لرستان، خرم‌آباد، ایران

چکیده

به منظور شناسایی و درک تاریخچه رسوب­گذاری سنگ­های کربناته سازند آسماری، یک برش چینه­شناسی به ضخامت 145 متر در جنوب لرستان (تاقدیس چناره) انتخاب شده است. لیتولوژی این سازند تناوبی از سنگ­آهک­های نازک­ لایه، متوسط لایه، ضخیم تا خیلی ضخیم ­لایه دولومیتی شده می­باشد. در این برش مرز زیرین سازند آسماری با سازند شهبازان به صورت ناپیوستگی پیوسته­نما (پاراکانفورمیتی) و مرز بالایی آن با سازند گچساران تدریجی می­باشد. نمونه­های برداشت شده از این برش 145 نمونه می­باشد که از  لحاظ محیط­رسوبی و فرایند­های دیاژنزی مورد بررسی قرار گرفتند بر اساس شواهد صحرایی و مطالعات برش­های نازک میکروسکوپی و با توجه به وجود شواهدی نظیر فراوانی روزن­داران بنتیک بدون­منفذ با پوسته پورسلانوز در بافتی از وکستون تا پکستون، جلبک­های قرمز، دانه­های کوارتز تخریبی در اندازه سیلت، جورشدگی ضعیف تا متوسط رسوبات و بافت گل­پشتیبان در نهایت منجر به شناسایی 7 ریزرخساره مربوط به 4 کمربند رخساره­ای لاگون، سد، بخش محدود شده (رمپ میانی) و رمپ داخلی گردید. در این برش چندین فرآیند دیاژنزی مانند میکریتی شدن، نوریختی (افزایشی و کاهشی)، سیمانی شدن (سیمان هم­محور، هم­ضخامت فیبری، هم­بعد، بلوکی، دروزی و پویی­کیلوتوپیک)، فشردگی (مکانیکی و شیمیایی)، انحلال (وابسته به فابریک و غیروابسته به فابریک)، جانشینی (پیریتی شدن، سیلیسی شدن و دولومیتی شدن) و تعیین مدل دیاژنزی شده است. براساس شواهد پتروگرافی، توالی پاراژنتیکی نهشته­های سازند آسماری در این برش در چهار محیط دریایی، آب شیرین، تدفینی و بالاآمدگی تفسیر شده است. سه مرحله دیاژنزی یعنی دیاژنز اولیه (ائوژنز)، دیاژنز میانی (مزوژنز) و دیاژنز نهایی (تلوژنز) برای نهشته­های مورد مطالعه تعیین شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Microfacies, sedimentary environment and diagenetic processes of carbonate rocks of the Asmari Formation( Chenareh Anticline, South Lorestan)

نویسندگان [English]

  • S. M. R. Emami Meybodi 1
  • I. Maghfouri Moghadam 2
  • M. Sedaghatnia 3
  • A. Barmal 4
1
2
3
4
چکیده [English]

In order to understand the sedimentation history of carbonate rocks of Asmari Formation, a 145 m thick stratigraphic section was selected in the south of Lorestan. The lithology of this periodic formation is from thin-layer, middle-layer limestones, thick to very thick-layered. The samples taken from this section are 145 samples that were examined in terms of sedimentary environment and diagenetic processes based on field evidence and studies of thin microscopic sections and due to the absence of evidence such as the construction of bird eyes. , Stromatactis cavities, Typical structures, Intracellular components, Evaporative minerals and the absence of traces and structures resulting from sediment drying as well as the absence of slippery and sedimentary sediments (turbidites, intraclasts and sections) Finally, it led to the identification of 7 micro-defects related to 4 lagoon facies belts, dam, restricted section (middle ramp) and internal ramp. In this section, several diagenetic processes such as micriticization, morphology (increasing and decreasing), cementation (coaxial cement, fibrous thickness, dimensional, block, joint and kilotopic dynamics), compaction (mechanical and chemical), dissolution (dependent To fabric and non-fabric dependent), substitution (pyritization, silicification and dolomitization) and diagenetic modeling. Based on petrographic evidence, the paragenetic sequence of Asmari Formation deposits in this section has been interpreted in four marine environments, freshwater, burial and uplift. Three stages of diagenesis, namely primary diagenesis (eogenesis), middle diagenesis (mesogenesis) and final diagenesis (telogenesis) have been determined for the studied deposits.

کلیدواژه‌ها [English]

  • Lithostratigraphy
  • Ramp
  • Poldokhtar
  • Diagenesis
  • Sedimentary environment
برمال، ا (1399) چینه­نگاری زیستی سازند آسماری - شهبازان در یال شمالی تاقدیس چناره، حوضه لرستان، پایان­نامه کارشناسی­ارشد، دانشگاه لرستان. 122 ص.
بهرامی، ف.، موسوی­حرمی، س، ر.، خانه­باد، م.، محمودی­قرائی، م. ح.، صادقی، ر (1393) رخساره­ها، محیط­رسوبی و عملکرد فرآیندهای دیاژنزی موثر بر کیفیت مخزنی سازند آسماری در میدان نفتی رامین، مجله رسوب­شناسی کاربردی، دوره 2، شماره 4، ص 16- 36.
رحیم­پوربناب، ح (1389) سنگ­شناسی کربناته با نگرشی بر کیفیت مخزنی، دانشگاه تهران، 570 ص.
فرشی، م.، موسوی­حرمی، س، ر.، محبوبی، ا.، خانه­باد، م (1396) رخساره­ها و فرآیندهای دیاژنزی و تاثیر آن­ها بر توزیع و ویژگی­های پتروفیزیکی و کیفیت مخزنی سازند آسماری در میدان نفتی گچساران، مجله رسوب­شناسی کاربردی، دوره 5، شماره 9، ص 40- 57.
فیض­نیا، س (1377) سنگ­های رسوبی کربناته، آستان قدس، دانشگاه امام رضا (ع). 304 ص.
مطیعی، ه (1372) زمین­شناسی ایران (چینه­نگاری زاگرس)، انتشارات سازمان زمین­شناسی، 583 ص.
Ahmad, A. H. M., & Bhat, G. M (2006) Petrofacies, provenance and diagenesis of the Dhosa sandstone member (Chari Formation) at Ler, Kachch Sub – basin, Western, India, Journal of Asian Earth Science, 27: 857- 872.
Amirshahkarami, M., Vaziri-Moghadam, H., Taheri, A (2007) Sedimentary Facies and sequence stratigraphy of the Asmari Formation at Chaman- Bolbol, Zagros Basin, Iran, Journal of Asian Earth sciences, 29: 947-959.
Arosi, A. H., Wilson, M. E. J (2015) Diagenesis and fracturing of a large-scale, syntectonic carbonate platform, Sedimentary Geology, 326: 109–134.
Buxton, M. W. N. and Pedley, H. M (1989) A standardized model for Tethyan Tertiary carbonates ramps. J GeollSoc London, 149: 746-748.
Dickson, J. A. D (1965) A modified staining technique for carbonate in the thin section, Nature, 205-587.
Dunham, R. J (1962) Classification of carbonate rocks according to depositional texture. American Association of Petroleum Geologists, 108-121.
Einsele, G (2000) Sedimentary Basin Evolution, Facies and Sediment Budget, 2nd Edition. Springer – Verfag, 297 p.
EL – Ghali, M. A. K., Tajoti, K. G., M ansorbeh, H., Ogle, N., & Kalin, R. M (2006) Origin and timing of sidrelite cementation upper Ordovician Glacogenic sandstone from the Murzuk basin, SW Libya. Marine and Petroleum Geology, 23: 459- 471.
El- Saiy, A. K., & Jordan, B. R (2007) Diagenetic aspects of tertiary carbonates west of the Northern Oman Mountains, United Arab Emirates. Journal of Asian EARTH Science, 31: 43 – 53.
Fabricius, I. L., & Borre, M (2007) Stylolites, Porosity, depositional texture, and silicates in Chalk facies sediments. Ontony Jave Plateau – Gorm and Tyra fields, North Sea. Sedimentology, 54: 183 – 205.
Farshi, M., Moussavi-Harami, R., Mahboubi, A., Khanehbad, M., Golafshani, T (2019) Reservoir rock typing using integrating geological and petrophysical properties for the Asmari Formation in the Gachsaran oil field, Zagros basin. J Petrol Sci Eng, 176: 161–171
Flügel, E (2004) Microfacies of Carbonate Rocks: Analysis Interpretation and Application. Springer-Verlag, Berlin, 976p.
Flügel, E (2010) Microfacies of Carbonate Rocks: Analysis Interpretation and Application. Springer-Verlag, Berlin, 976p.
Folk, R. L (1965) Some aspect of recrystallization in ancient limestones. In: Pray, L. C., @ Murray, R. C., (EDS.), Dolomitization and Limestone Diagenesis – a Symposium, SEPM Special Publication, 13: 14-48.
Garcia – pichel, F (2006) Plausible mechanisms for the boring on carbonates by microbial protorophs Sedimentary Geology, 125: 29-50.
Geel, T (2000) Recognition of stratigraphic sequences in carbonate platform and slope deposits, Emprical model based on microfacies analysis of Paleogene deposits in southeastern Spain, Paleogeography, Paleoclimatology, Paleoecology, 155: 211-238.
Gharechelou, S., Amini, A., Bohloli, B., Swennen, R (2020) Relationship between the sedimentary microfacies and geomechanical behavior of the Asmari Formation carbonates, southwestern Iran. Mar Petrol Geol, 116: 104306
Goldhaber, M. B (2004) Sulfur – rich sediment, In: Mackezie F. T., (ED.), Sediments, Diageneiss, and Sedimentary Rocks, Treatise on Geochemistry. Elsevier, Amesterdam, 257 – 288.
Halley, R. B. and Harris, P. M (1979) Fresh water cementation of a 1, 000 year-old oolite. Jour. Sediment. Res, 49: 969–988.
Heydari, E., and Wade, W (2014) Massive recrystallization of low – Mg calcite at high temperatures in hedrocarbon source rocks: Implication for organic acids as factors in digenesis. American Association of Petroleum Geologists Bulletin, 86: 1285 – 1303.
Insalaco, E., Virgone, A., Corme, B., Gaillot, J., Kamali., Moallemi, A., Lotfpour, M., Monibi, S (2006) upper Dalan Member and Kangan formation between the Zagros.
Kamalifar, F., Aleali, M., Ahmadi, V., Mirzaiee, A (2020) Facies distribution, paleoenvironment and sequence stratigraphy model of the Oligo-Miocene Asmari Formation (Fars Province, south of Iran). Turkish Journal of Earth Sciences, 29(4).
Karami, S., Ahmadi, V., Sarooe, H., Bahrami, M (2020) Facies analysis and depositional environment of the Oligocene – Miocene Asmari Formation, in interior Fars (Zagros Basin, Iran). Carbonate and Evaporites, 35 (3): DOI: 10.1007/s13146-020-00621-5         
Longman, M. W (1980) Carbonate digenetic textures from near surface digenetic environments. AAPG Bull, 64: 461-487.
Lorestani, M., Kangazian, A., Safari, A., Noura, M. R., Nasehi, E (2016) Microfacies, Sedimentary Environment and Sequence Stratigraphy of the Asmari Formation in Masjed-I-Soleyman Oil Field, Khuzestan Provience, Southwest Iran. Open Journal of Geology, 6: 840-851.
Madden, R. and Wilson, M (2013) Diagenesis of a SE Asian Cenozoic carbonate platform margin and its adjacent basinal deposits, Sedimentary Geology, 286 (287): 20–38.
Messadi, A. M., Mardassi, B., Ouali, J, A., Touir, J (2018) Diagenetic process as tool to diagnose paleo – environment conditions, bathymetry and oxygenation during Late Paleocene – Early Eocene in the Gafsa Basin. Carbonate and Evaporates, 1-16.
Monjezi, N., Amirshahkarami, M., Bakhtiar, H. A., Shirazi, MPN., Mirzaee, A (2019) Palaeoecology and microfacies correlation analysis of the Oligocene-Miocene Asmari formation, in the Gachsaran oil field, Dezful Embayment, Zagros Basin, Southwest Iran. Carbonates Evaporites, 34(4):1551–1568
Moore, C. H (2001) Carbonate Reservoirs, Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework. Elsevier, Amsterdam, p. 444.
Nicolaides, S., Wallace, M. W (1997) Submarine cementation and sub aerial exposure in Oligo-Miocene temperate carbonates, Torquay Basin, Australia. Journal of Sedimentary Research, 67 (3): 397–410.
Pettijohn, F. J (1975) Sedimentary Rocks. Harper& Row. New York. 628 pp.
Railsback, L. B (1993) Lithologic controls on morphology of pressure-dissolution surfaces (stylolite’s and dissolution seams) in Paleozoic carbonate rocks from the mideastern United States. Journal of Sedimentary Research, 63 (3): 513–522.
Reuning, L., Reijmer, J. J. G., Betzler, C (2002) Sedimentation cycles and their diagenesis on the slop of a Miocene carbonate ramp (Bahamas ODP Leg 166), Mari. Geol, 185: 121-142.
Richardson, F. D. S (1939) Lower Fars stratigraphy summary of outcrop evidences, 611: 27 – 40.
Rogen, B., & Fabricius, I. L (2002) Influence of clay and silica on permeability and capillary entry pressure of chalk reservoirs in the North sea. Petroleum Geoscience, 8: 287 – 293.
Ronchi, P., Jadoul, F., Ceriani, A., Giulio, A. D., Scotti, P., Ortenzi, A. and Massara, E. P (2011) Multistage dolomitization and distribution of dolomitized bodies in Early Jurassic carbonate platforms (Southern Alps, Italy), Sedimentology, 58: 532–565.
San Miguel, G., Aurell, M. and Bádenas, B (2017) Diagenetic evolution of a shallow marine Kimmeridgian carbonate ramp (Jabaloyas, NE Spain): implications for hydrocarbon reservoir quality. Arabian Journal of Geosciences, 10 (16): 376 p.
Seibel, M. J., & James, N. P (2017) Diagenesis of Miocene, incised Valley – filling limestones: Provence Southern France. Sedimentary Geology, 347: 21 – 35.
Selley, R. Z (1996) Ancient sedimentary environments. Chapman and Hall, 300pp.
Seyrafian, A., Vaziri-Moghaddam, H., Arzani, N., Taheri, A (2011) Facies analysis of the Asmari Formation in central and north-central Zagros basin, southwest Iran: Biostratigraphy, paleoecology and diagenesis. Revista Mexicana de Ciencias Geológicas, 28(3): 439-458.
Smith, J. V (2000) Three – dimensional morphology and connectivity of Stylolite shape reactivated during veining. Journal of Structural Geology, 22: 59 – 64.
Tucker, M. E., Wright, V. P (1990) Carbonate sedimentology. Blackwell Scientific Publications, Oxford, 482 p.
Tucker, M. E (2001) Sedimentary Petrology. 3d Edition, Blackwell, Oxford, 260 p.
Van Buchem, F. S. P., Allan, T. L., Laursen, G. V., Lotfpour, M., Moallemi, A., Monibi, S., Motiei, H., Pickard, N. A. H., Tahmasbi, A. R., Vedrenne, V. and Vincent, B (2010) Regional stratigraphic architecture and reservoir types of the Oligo-Miocene deposits in the Dezful Embayment (Asmari and Pabdeh Formations) SW Iran. Geological Society Special Publications, 329 (1): 219-263.
Vaziri-Moghaddam, H., Kimiagari, M. & Taheri, A (2006) Depositional environment and sequence stratigraphy of the Oligocene – Miocene Asmari Formation in SW Iran, Lali Area, Facies, 52: 41-51.
Vaziri-Moghaddam, H., Seyrafian, A., Taheri, A., Motiei, H (2010) Oligocene-Miocene ramp system (Asmari Formation) in the NW of the Zagros basin, Iran: microfacies, paleoenvironment and depositional sequence. Revista Mexicana de Ciencias Geológicas, 27(1): 56–71.
Westphal, H (2006) Limestone – Marl alternation as environmental archives and the role of early diagenesis: a critical review. International Journal of Science (Geology Rundsch), 95: 947-961.
Wilson, J. L (1986) Carbonate facies in geology history: New York, Springer-verlag,471p.
Zaid, S. M (2012) Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (lower Miocene), Warda Field, Gulf of Suez, Egypt. J. African Earth Sci, 66: 56- 71.
Zabihi Zoeram, F., Vahidinia, M., Mahboubi, A., Amiri Bakhtiar, H (2013) Facies analysis and sequence stratigraphy of the Asmari Formation in the northern area of Dezful Embayment, south-west Iran. Studia UBB Geologia, 58(1): 45-56.
Zhang, H., Ding, L., Wang, X., Wang, L., Wang, Q. and Xia, G (2006) Carbonate Diagenesis Controlled by Glacioeustatic Sea-Level Changes: A Case Study from the Carboniferous-Permian Boundary Section at Xikou, China. J. China Univ. Geosci, 17: 103- 114.