عوامل برهم زننده توالی رسوبات هولوسن در خلیج فارس

نویسندگان

1 استادیار پژوهشگاه ملی اقیانوس‌شناسی و علوم جوی، تهران، ایران

2 دانشیار مرکز ملی تحقیقات علمی فرانسه (CNRS)، فرانسه

چکیده

خلیج­فارس از بارزترین جلوه‌های افزایش تراز اقیانوس‌های جهان در پسایخبندان است. از همین رو، مطالعه رسوبات هولوسن خلیج­فارس از اهمیت بالایی برای بازسازی تغییرات محیطی پسایخبندان برخوردار است. درک توالی صحیح حوادث اقلیمی و اقیانوس‌شناختی پس از یخبندان نیازمند شناخت عواملی است که موجب برهم خوردن یا جابجایی توالی رسوبات هولوسن خلیج­فارس شده‌اند. به این منظور، از دو مغزه کوتاه در خلیج­فارس و تنگه هرمز بهره بردیم که سن‌سنجی آن­ها نشان‌دهنده به‌هم‌ریختگی توالی آن­ها است. این مغزه­ها با استفاده از دستگاه مغزه­گیر وزنی از عمیق­ترین بخش­های خلیج­فارس و تنگه هرمز گرفته شدند. مطالعات رسوب‌شناسی با هدف تعیین اندازه ذرات، مقدار ماده آلی و مقدار کربنات انجام شد و برای تشخیص تغییرات ظاهری از عکسبرداری با رزولوشن بالا استفاده شد. تصاویر اشعه­ایکس از مغزه‌ها برای بررسی تغییرات بافتی در توالی رسوبات مورد استفاده قرار گرفت. نتایج نشان‌ داد که پدیده معکوس‌شدگی سن در مغزه تنگه هرمز به دفعات رخ داده است. به نظر می‌رسد آبگونگی ناشی از زمین‌لرزه و احتمالاً خروج گاز از بستر دریا عوامل مهم برهم‌زننده‌ی توالی رسوبات در تنگه هرمز هستند. در مغزه خلیج­فارس نتایج حاکی از دو پدیده معکوس‌شدگی سن و نبود رسوب­گذاری است. بررسی‌ها نشان می‌دهد که این دو پدیده به دلیل زیست‌آشفتگی رسوبات بستر خلیج­فارس روی داده­اند. پیشنهاد می‌شود پیش از شروع مطالعات جامع و انجام تفاسیر مرتبط برای بازسازی ‌محیط دیرینه، مطالعات رسوب‌شناسی با هدف تعیین میزان به‌هم‌ریختگی توالی رسوبات مورد توجه قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Causes of disturbances in the Persian Gulf ‘s Holocene sedimentary sequences

نویسندگان [English]

  • A. Naderi Beni 1
  • M. Jamali 2
1 Assist. Prof., Iranian National Institute for Oceanography and Atmospheric Sciences (INIOAS), Tehran, Iran
2 Assoc. Prof., Institut Méditerranéen de Biodiversité et d'Ecologie (CNRS), France
چکیده [English]

The Persian Gulf is one of the most prominent postglacial landscape changes in the world. The basin has recorded the Holocene climate changes and sea level fluctuations in its sedimentary sequences. Therefore, the study of the Persian Gulf’s Holocene sediments is of great importance. Understanding the postglacial climatic and oceanographic condition requires the discrimination of post-depositional disturbances from syn-depositional processes that are controlled by climatic and oceanographic conditions. In this regard, we used two short sediment cores obtained from the deepest parts of the Persian Gulf (PG) and Strait of Hormuz (SH) using a gravity corer to investigate the most important disruptors of the Holocene sedimentary sequences. Sedimentological studies along with X-ray images and high-resolution photographs were implemented on two well radiocarbon-dated short sediment cores. The radiocarbon results show that the sediments are disturbed in both cores. The SH core shows repeated age reversal and evidence of liquefaction. The PG core, on the other hand shows evidence of age reversal on top and a hiatus at the base. We assumed that the late-Holocene SH sedimentary sequence is more prone to be disturbed by earthquake while gas venting and relatively strong bottom currents are also influential. On the other side, bioturbation is more responsible for sediment disturbances in PG during the Mid to late Holocene. It is suggested that before starting comprehensive studies on the PG sediments, sedimentary structures are investigated to determine any disturbances in the sequence.

کلیدواژه‌ها [English]

  • Sedimentology
  • Tsunami
  • Bioturbation
  • Paleo-environment
  • Earthquake
آقانباتی، س. ع (1383) زمین­شناسی ایران، تهران، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی، 586 ص.
حق‌بین، م.، رضایی، خ.، بیات، م.، رفیعی، ب.، هاشمی قاسم آبادی، ع (1395) بررسی شواهد رسوب‌شناسی رویداد سونامـی در کـرانه‌های مـکران، بلوچـستان، نـشریه رسوب­شناسی کاربردی، دوره 4، شماره 7، ص 82-100.
Al-Ghadban, A., Abdali, F., and Massoud, M (1998) Sedimentation rate and bioturbation in the Persian Gulf. Environment internationa, 24 (1-2): 23-31.
Anderson, D. M (2001) Attenuation of millennial‐scale events by bioturbation in marine sediments. Paleoceanography, 16(4): 352-357.
Behbahani, R., Hosseinyar, G., and Lak, R, (2015) The controlling parameters on organic matter preservation within the bottom sediments of the northern part of the Persian Gulf. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 1: 267-283.
Bird, E (2010) Encyclopedia of the world's coastal landforms. Springer Science & Business Media.
Cullen, D. J (1973) Bioturbation of superficial marine sediments by interstitial meiobenthos. Nature, 242 (5396): 323-324.
Goff, J. A., Austin Jr, J. A., Gulick, S., Nordfjord, S., Christensen, B., Sommerfield, C., Olson, H., and Alexander, C (2005) Recent and modern marine erosion on the New Jersey outer shelf. Marine Geology, 216 (4): 275-296.
Goldfinger, C (2011) Submarine paleoseismology based on turbidite records. Annual Review of Marine Science, 3: 35-66.
Hamzeh, M. A (2021) Environmental implications of the distribution and physical characteristics of surface sediments in the northern Persian Gulf. Geo-Marine Letters, 41(4): 1-15.
Hargreaves, J., and Annan, J (2009) On the importance of paleoclimate modelling for improving predictions of future climate change. Climate of the Past, 5 (4): 803-814.
Heidarzadeh, M., Šepić, J., Rabinovich, A., Allahyar, M., Soltanpour, A., and Tavakoli, F (2020) Meteorological tsunami of 19 March 2017 in the Persian Gulf: observations and analyses. Pure and Applied Geophysics, 177(3): 1231-1259.
Heyvaert, V. M. A., and Baeteman, C (2007) Holocene sedimentary evolution and palaeocoastlines of the Lower Khuzestan plain (southwest Iran). Marine Geology, 242 (1): 83-108.
Hibsch, C., Alvarado, A., Yepes, H., Perez, V. H., and Sébrier, M (1997) Holocene liquefaction and soft-sediment deformation in Quito (Ecuador): A paleoseismic history recorded in lacustrine sediments. Journal of Geodynamics,  24 (1-4): 259-280.
Jordan, B. R (2008) Tsunamis of the Arabian Peninsula a guide of historic events. Science of Tsunami Hazards,  27 (1): 31.
Kämpf, J., and Sadrinasab, M (2006) The circulation of the Persian Gulf: a numerical study. Ocean Science, 2 (1): 27-41.
Kamranzad, B., Etemad-Shahidi, A., Chegini, V (2013) Assessment of wave energy variation in the Persian Gulf. Ocean Engineering, 70: 72-80.
Kennett, D. J., and Kennett, J. P (2007) Influence of Holocene marine transgression and climate change on cultural evolution in southern Mesopotamia. Climate Change and Cultural Dynamics Elsevier, 229-264.
Kumar, A (2013) Natural hazards of the Arabian Peninsula: their causes and possible remediation. In: Sinha, R., and  Ravindra, R. (Eds.), Earth System Processes and Disaster Management. Springer, 155-180.
Lambeck, K (1996) Shoreline reconstructions for the Persian Gulf since the last glacial maximum. Earth and Planetary Science Letters, 142 (1-2): 43-57.
Lambrechts, J., Humphrey, C., McKinna, L., Gourge, O., Fabricius, K., Mehta, A., Lewis, S., and Wolanski, E (2010) Importance of wave-induced bed liquefaction in the fine sediment budget of Cleveland Bay, Great Barrier Reef. Estuarine, Coastal and Shelf Science, 89 (2): 154-162.
Liu, P. F., Higuera, P., Husrin, S., Prasetya, G. S., Prihantono, J., Diastomo, H., Pryambodo, D. G. and Susmoro, H (2020) Coastal landslides in Palu Bay during 2018 Sulawesi earthquake and tsunami. Landslides, 17(9): 2085-2098.
Lutze, G. F., and Wolf, R (1976) Persian foraminifera: depth distribution and sea level change. In Proceedings 1st International Symposium on Continental Margin Benthic Foraminifera, Part B. Paleoecology and Biostratigraphy. Maritime Sediments Spec, 425–429.
Moayedi, H., Huat, B. B., Mokhberi, M., Moghaddam, A. A., and Moghaddam, S. A (2010) Using stone column as a suitable liquefaction remediation in Persian Gulf coast. Electronic Journal of Geotechnical Engineering, 15: 1757-1767.
Mokhtari, M (2011) Tsunami in Makran Region and its effect on the Persian Gulf. Tsunami–Growing Disaster, Croatia, InTech: 161-174.
Monecke, K., Anselmetti, F. S., Becker, A., Sturm, M., and Giardini, D (2004) The record of historic earthquakes in lake sediments of Central Switzerland. Tectonophysics, 394 (1-2): 21-40.
Nissen, E., Yamini-Fard, F., Tatar, M., Gholamzadeh, A., Bergman, E., Elliott, J., Jackson, J., and Parsons, B (2010) The vertical separation of mainshock rupture and microseismicity at Qeshm island in the Zagros fold-and-thrust belt, Iran. Earth and Planetary Science Letters, 296 (3-4): 181-194.
Nowroozi, A. A., and Ahmadi, G (1986) Analysis of earthquake risk in Iran based on seismotectonic provinces. Tectonophysics, 122 (1-2): 89-114.
Purser, B (1973) Sedimentation around bathymetric highs in the southern Persian Gul. In: The Persian Gulf. Springer, Berlin, Heidelberg, 157-177.
Purser, B., and Seibold, E (1973) The principal environmental factors influencing Holocene sedimentation and diagenesis in the Persian Gulf. In: The Persian Gulf. Springer, Berlin, Heidelberg, 1-9.
Purser, B. H (2012) The Persian Gulf: Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea, Springer Science & Business Media.
Rajendran, C., Rajendran, K., Shah-Hosseini, M., Naderi Beni, A., Nautiyal, C., and Andrews, R (2013) The hazard potential of the western segment of the Makran subduction zone, northern Arabian Sea. Natural hazards, 65 (1): 219-239.
Rastgoo, M., Azhari, S. M., and Gheitanchi, M. R (2010) Seismicity and Seismotectonic in the Strait of Hormuz, in Proceedings The 1 st International Applied Geological Congress, Islamic Azad University - Mashad Branch, Iran,, 26-28 April 2010 2010, Department of Geology, Islamic Azad University.
Riegl, B (2003) Climate change and coral reefs: different effects in two high-latitude areas (Persian Gulf, South Africa). Coral reefs, 22(4): 433-446.
Reynolds, R. M (1993) Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—Results from the Mt Mitchell expedition. Marine Pollution Bulletin, 27: 35-59.
Rose, Jeffrey I (2010) New light on human prehistory in the Persian Gulf Oasis.Current Anthropology, 51 (6): 849-883.
Shanmugam, G (2012) Process-sedimentological challenges in distinguishing paleo-tsunami deposits. Natural Hazards, 63 (1): 5-30.
Stoffers, P., and Ross, D. A (1979) Late Pleistocene and Holocene sedimentation in the Persian Gulf—Gulf of Oman. Sedimentary Geology, 23 (1): 181-208.
Uchupi, E., Swift, S., and Ross, D (1996) Gas venting and late Quaternary sedimentation in the Persian Gulf. Marine Geology, 129 (3-4): 237-269.
Uchupi, E., Swift, S., and Ross, D (2002) Morphology and late quaternary sedimentation in the Gulf of Oman Basin. Marine Geophysical Researches, 23 (2): 185-208.
Uchupi, E., Swift, S. A., and Ross, D. A (1999) Late Quaternary stratigraphy, paleoclimate and neotectonism of the Persian Gulf region. Marine Geology, 160 (1): 1-23.
Zaré, M., Hashemi, S. A., Ebadi, R., Amirnejad-Mojdehi, S., Rahmani, R., and Sardar, A (2012) Tsunami hazard in the shorelines of Khark island (Persian Gulf), Iran. Earthquake Science, 25 (4): 299-305.