مطالعه بافت، عناصر ساختاری و مدل رسوبی رودخانه کوهستانی میانرود، میرجاوه، جنوب خاوری ایران

نویسنده

استادیار گروه زمین‌شناسی، دانشکده علوم، دانشگاه آزاد اسلامی واحد زاهدان، زاهدان، ایران

چکیده

گستره مورد مطالعه رودخانه میانرود به طول 51 کیلومتر، در جنوب خاور شهر میرجاوه و شمال کوه آتشفشان تفتان از نواحی بسیار کم بارش و دارای اقلیمی خشک است. این حوضه از نظر زمین­شناسی در زون ساختاری فلیشی خاور ایران واقع شده است. بیش از 70 درصد سطح حوضه، کوهستانی با ناهمواری شدید است. جهت مطالعه رسوب­شناسی رودخانه تعداد 17 نمونه از کف کانال برداشت شد. روند تغییرات درصد وزنی گراول از بالادست به پایین­دست روندی کاهشی و روند تغییرات درصد وزنی ماسه و گل روندی افزایشی است. نمونه­های گراولی از نظر شکل دانه میله­ای، تیغه­ای، دیسکی و کروی هستند. رخساره­های گراولی بر اساس گسترش و درجه اهمیت آن­ها عبارتند از: رخساره گراولی Gmm و Gmg در مناطق بالادست (شدت جریان بالا)، رخساره گراولی Gcm و رخساره گراولی Gh به همراه رخساره­های Gp و Gt در مناطق میانی و مرکزی، رخساره آواری دانه ریز به صورت رخساره Fl و  Fm در مناطق پایین­دست رودخانه دیده می­شود. با توجه به نوع و گسترش رخساره­های سنگی عناصر ساختاری کانال (عنصر CH)، بستر و سدهای گراولی (عنصر GB)، ماکروفرم­های افزایشی جانبی (عنصر LA) و رسوبات دانه ریز دشت سیلابی (عنصر FF) شناسایی شد. نزدیکی به منشاء، شیب زیاد توپوگرافی حوضه و بستر کانال اصلی رودخانه، کم عمق بودن کانال اصلی رودخانه، پیچش کم، عدم جابجایی و مهاجرت کانال به طرفین، وجود انواع سدهای گراولی در کانال رودخانه و گسترش عنصر ساختاری GB، گسترش گراول­های درشت دانه با طبقه­بندی توده­ای و افقی شکل در بستر و دیواره رودخانه، وجود رخساره­های Gcm، Gh، Gp و Gt، از جمله شواهدی هستند که مدل رودخانه میانرود را به عنوان رودخانه بریده­ بریده کم عمق با بستر گراولی معرفی می­کند.

کلیدواژه‌ها


عنوان مقاله [English]

Study of texture,architectural elements and sedimentary model of Mianroud mountain river, Mirjaveh, southest Iran

نویسنده [English]

  • M. R. Noura
Assist. Prof., Dept., of Geology, Faculty of Science, Islamic Azad University, Zahedan Branch, Zahedan, Iran
چکیده [English]

River sedimentology provides significant basic data for river engineering projects (sediment transport and channel stabilit.( Most of these data are collected after careful study of bedform, texture and facies analysis along with architectural elements (Hey et al., 2015). Downstream grain size changes are complex in a gravelly bed river and often do not follow a simple sediment graft model. The processes affecting the sediment degradation process in rivers are selective sorting, wear and sedimentation rate of lithological units of the catchment (Ruset, 1978). Mianroud river is located in the southeast of Iran, which is one of the very low rainfall areas with an average annual rainfall of 63.6 mm and has a dry climate. Severe and short-term showers play a very important role in the occurrence of large floods in the Mianrud catchment area. In this area, factors such as diversity of different faults, geomorphic controls (river flow, basin slope, ...), hydraulics (water discharge), and sedimentology (sediment production, transfer and re-sedimentation) control the main parameters of the river (Sin Ciana and Pasternak, 2017.( This paper presents the textural changes of sediments, rock facies and architectural elements and sediment model in a rugged mountain river.

کلیدواژه‌ها [English]

  • Clastic facies
  • Architectural element
  • Braided river
  • Mirjaveh
آقانباتی، ع (1383) زمین­شناسی ایران. سازمان زمین­شناسی و اکتشافات معدنی کشور، جلد اول، 586 ص.
افتخارنژاد، ج (1984) نقشه زمین­شناسی نوک­آباد (1:100000) سازمان زمین­شناسی و اکتشافات معدنی کشور.
جوانبخت، م.، موسوی­حرمی، ر.، ترشیزیان، ح.، شریفی، ا.، سوختانلو، ح (1387) برآورد رسوب و بررسی روند ریزشدگی در حوضه­ی آبریز سد طرق با تاکید بر زیرحوضه مغان-کرتیان. فصلنامه زمین­شناسی کاربردی، سال 4، شماره ی 2، ص 107-97.
سامانی، ب.، اشتری، ش (1371) تکوین زمین­شناسی ناحیه سیستان و بلوچستان. فصلنامه علوم زمین، سال اول، شماره 4، ص 14-26.
متولی­زاهد، ط.، رضایی، پ.، زارع­زاده، ر (1399) نگرشی بر ویژگی­های بافتی و کانی­شناسی رسوبات دریاچه دشت ارژن، استان فارس، مجله رسوب­شناسی کاربردی، دوره 8، شماره 16، ص 8- 18.
موسوی­حرمی، ر (1386) رسوب­شناسی. انتشارات  آستان قدس رضوی، 474 ص.
موسوی­حرمی، ر.، محبوبی، ا (1382) رسوب­شناسی کاربردی. مرکز نشر دانشگاهی، تهران، 266 ص.
موسوی­حرمی، ر.، محبوبی، ا (1385) سنگ­شناسی رسوبی. انتشارات جهاد دانشگاهی مشهد، 420 ص.
مهرپرتو، م (1994) نقشه زمین­شناسی تفتان (مقیاس1:100000). سازمان زمین­شناسی و اکتشافات معدنی کشور.
نصیری،. ی.،  تقدیسی، س.، محمودی­قرایی، م. ح.، محبوبی، ا.، خانه­باد، م.، صداقت­نیا، م.، عفت پاسبان، ع (1400) ارزیابی فرسایش خاک و تولید رسوب با به کارگیری مدل پسیاک اصلاحی و GIS در حوضه آبریز عشق آباد- سوله (جنوب باختر قوچان). مجله رسوب­شناسی کاربردی، دوره 9، شماره 17، ص 65-82.
Allen, J. R. L (2012) Principles of Physical Sedimentology, Springer Science & Business Media, 272pp.
Blott, S. J., Pye, K (2008) Particle shape: A review and new methods of characterization and classification, Sedimentology, 55: 31-63.
Brierley, G. I., Fryirs, K. I (2006) Geomorphology and River Management, Blackwell Publication, 387pp.
Buraas, E. M., Renshaw, C. E., Magilligan, F. J., Dade, W. B (2014) Impact of reach geometry on stream channel sensitivity to extreme floods. Earth Surface Process Landform, 39: 1778–1798.
Church, M (2008) Multiple scales in rivers. In: H. Habersack, H. Piegay, M. Rinaldi, (Eds.), Gravel-Bed Rivers, Earth Surface Processes Landform, 6: 3–28.
Cienciana, P., Pasternack, G. B (2017) Floodplain inundation response to climate, valley form, and flow regulation on a gravel-bed river in a Mediterranean-climate region. Geomorphology, 282: 1–17.
Doronzo, D. M., Dellino, P (2010) A fluid dynamic model of volcaniclastic turbidity currents based on the similarity with the lower part of dilute pyroclastic density currents: evaluation of the ash dispersal from ash turbidites. J Volcanol Geotherm Res, 191: 193–204.
Doronzo, D. M., Dellino, P (2013) Hydraulics of subaqueous ash flows as deduced from their deposits: 2. Water entrainment, sedimentation, and deposition, with implications on pyroclastic density current deposit emplacement. J Volcanol Geotherm Res, 258: 176–186.
He, H., Tian, Y. Q., Mu, X (2015) Confluent flow impacts of flood extremes in the middle Yellow River. Quat Int, 380: 382–390.
Folk, R. L (1980) Petrology of Sedimentary Rocks; Hemphill Publishing Co., Austin, Texas, 182pp.
Frings, R. M (2008) Downstream fining in larg sand-bed rivers; Earth- Science Reviews, 87: 158-193.
Gavers, G., Gimenez, R., Van Oosst, K (2007) Rill erosion: Exploring the relationship between experiments, modeling and field observation; Earth Science Reviews, 84: 87-102.
Javidan, M., Mokhtarpour, H., Sahraeyan, M., Kheyrandish, H (2015) Lithofacies, architectural elements and tectonic provenance of the siliciclastic rocks of the lower Permian Dorud formation in the AlborzMountain range, Northern Iran. J Afr Earth Sci, 109: 211–223.
Kanhaiya, S., Singh, B. P (2014) Spatial variation of textural parameters in a small river: an example from Khurar River, Khajuraho, Chhaterpur District, Madhya Pradesh, India, Global. Journal of Earth Science and Engineering, 1: 34–42.
Kumar, R., Suresh, N., Satish, J., Sangode, Kumaravel, V (2007) Evolution of the quaternary alluvial fan system in the Himalayan foreland basin, implications for tectonic and climatic decoupling. Quat Int, 159: 6–20.
Lowey, G. W (2007) Lithofacies analysis of the Dezadeash formation (Jura-cretaceous), Yucon, Cauode: the depositional architecture of a mud/sand rich turbidite system. Sediment Geol, 198: 273–291.
Martin-Vide, J. P., Plana-Casado, A., Sambola, A., Capape, S (2015) Bedload transport in a river confluence. Geomorphology, 250: 15–28.
Miall, A. D (1996) The Geology of Fluvial Deposits, Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer-Verlag, Berlin, 582 pp.
Miall, A. D (2006) Principle of Sedimentary Basin analysis. Springer- Verlag, New York, 668 pp.
Moussavi-Harami, R., Mahboubi, A., Khanehbad, M (2004) Analysis of controls downstream fining along three gravel-bed rivers in the Band-e-Golestan drainage basin NE Iran. Geomorphology, 61: 143-153.
Nichols, G (2009) Sedimentary and Stratigraphy. John Wiley & Sons, Ltd, Publication, 398pp.
Pizzuto, J. E., Moody, J. A., Meade, R. H (2008) Anatomy and Dynamics of a Floodplain, Powder River, Montana, USA.  J. of Sed. Research, 78: 16-28.
Remo, J. W. F., Heine, R. A., Ickes, B. S (2016) Particle size distribution of mainchannel- bed sediments along the upper Mississippi River, USA. Geomorphology, 264: 118–131.
Sahraeyan, M (2013) Sedimentology and palaeogeography of conglomerates from the Aghajari formation in Zagros Basin, SW Iran. Int J Adv Geosci, 1: 13–22.
Schlunegger, F., Badoux, A., Mc Ardell, B. W., Gwerder, C., Schnydrig, D., Riek-zapp, D., Molnar, P (2009) Limits of sedimentation transfer in an alpine debris-flow catchment, Illgraben, Switzerland. Quaternary Science Reviews, 20: 1097-1105.
Rust, B. R (1978) A classification of alluvial channel systems. In: Miall, A. D. (Ed.), Fluvial Sedimentology. Canadian Society of Petroleum Geologists, Calagary. Memoir, 5: 187-198.
Tena, A., Batalla, R. J., Vericat, D., Lopez-Tarazon, J. A (2011) Suspended sediment dynamics in a large regulated river over a 10-year period (the lower Ebro, NE Iberian Peninsula). Geomorphology, 125: 73–84.
Tucker, M. E (2001) Sedimentary Petrology: An introduction to the origin of Sedimentary Rocks. Blackweii, 262pp.
Walker, H. J., Hudson, P. F (2003) Hydrologic and geomorphic processes in the Colville River delta, Alaska. Geomorphology, 56: 291-303.